In this paper, the modelling and analysis of prey-predator model involving predation of mature prey is done using DDE. Equilibrium points are calculated and stability analysis is performed about non-zero equilibrium point. Delay parameter destabilizes the system and triggers asymptotic stability when value of delay parameter is below the critical point. Hopf bifurcation is observed when the value of delay parameter crosses the critical point. Sensitivity analysis has also been performed to look into the effect of other parameters on the state variables. The numerical results are substantiated using MATLAB.
机构:
Nanjing Tech Univ, Sch Phys & Math Sci, Nanjing 211816, Jiangsu, Peoples R ChinaNanjing Tech Univ, Sch Phys & Math Sci, Nanjing 211816, Jiangsu, Peoples R China
Rao, Feng
Castillo-Chavez, Carlos
论文数: 0引用数: 0
h-index: 0
机构:
Arizona State Univ, Simon A Levin Math Computat & Modeling Sci Ctr, Tempe, AZ 85287 USANanjing Tech Univ, Sch Phys & Math Sci, Nanjing 211816, Jiangsu, Peoples R China
Castillo-Chavez, Carlos
Kang, Yun
论文数: 0引用数: 0
h-index: 0
机构:
Arizona State Univ, Coll Integrat Sci & Arts, Sci & Math Fac, Mesa, AZ 85212 USANanjing Tech Univ, Sch Phys & Math Sci, Nanjing 211816, Jiangsu, Peoples R China