Global Isometric Embedding of Surfaces in R3

被引:0
|
作者
Han, Qing [1 ,2 ]
机构
[1] Univ Notre Dame, Dept Math, Notre Dame, IN 46556 USA
[2] Peking Univ, Beijing Int Ctr Math Res, Beijing 100871, Peoples R China
关键词
CURVATURE CHANGING SIGN; DIMENSIONAL RIEMANNIAN-MANIFOLDS; GAUSSIAN CURVATURE; R3;
D O I
10.1007/978-3-319-18573-6_2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note, we give a short survey on the global isometric embedding of surfaces (2-dimensional Riemannian manifolds) in R-3. We will present associated partial differential equations for the isometric embedding and discuss their solvability. We will illustrate the important role of Gauss curvature in solving these equations.
引用
收藏
页码:29 / 47
页数:19
相关论文
共 50 条
  • [31] Centroaffine Translation Surfaces in R3
    Yang, Yun
    Yu, Yanhua
    Liu, Huili
    RESULTS IN MATHEMATICS, 2009, 56 (1-4) : 197 - 210
  • [32] HELICOIDAL MINIMAL SURFACES IN R3
    Perdomo, Oscar M.
    ILLINOIS JOURNAL OF MATHEMATICS, 2013, 57 (01) : 87 - 104
  • [33] Laguerre Minimal Surfaces in R3
    Song, Yu Ping
    Wang, Chang Ping
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2008, 24 (11) : 1861 - 1870
  • [34] ON THE CURVATURE OF KNOTTED SURFACES IN R3
    KUIPER, NH
    MEEKS, W
    ASTERISQUE, 1983, (107-) : 215 - 217
  • [35] Affine isometric embedding for surfaces
    Ivey, T
    GEOMETRIAE DEDICATA, 1999, 75 (03) : 235 - 243
  • [36] Affine Isometric Embedding for Surfaces
    Thomas Ivey
    Geometriae Dedicata, 1999, 75 : 235 - 243
  • [37] Embedding Plane 3-Trees in R2 and R3
    Durocher, Stephane
    Mondal, Debajyoti
    Nishat, Rahnuma Islam
    Rahman, Md Saidur
    Whitesides, Sue
    GRAPH DRAWING, 2012, 7034 : 39 - +
  • [38] The Weierstrass representation of closed surfaces in R3
    Taimanov, IA
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1998, 32 (04) : 258 - 267
  • [39] DEGENERATE HOMOGENEOUS AFFINE SURFACES IN R3
    VRANCKEN, L
    GEOMETRIAE DEDICATA, 1994, 53 (03) : 333 - 351
  • [40] Complete Embedded Harmonic Surfaces in R3
    Connor, Peter
    Li, Kevin
    Weber, Matthias
    EXPERIMENTAL MATHEMATICS, 2015, 24 (02) : 196 - 224