A deep learning approach for automatic mapping of poplar plantations using Sentinel-2 imagery

被引:20
|
作者
D'Amico, G. [1 ]
Francini, S. [1 ,2 ,3 ]
Giannetti, F. [1 ]
Vangi, E. [1 ,3 ]
Travaglini, D. [1 ]
Chianucci, F. [4 ]
Mattioli, W. [5 ]
Grotti, M. [4 ,6 ]
Puletti, N. [4 ]
Corona, P. [4 ]
Chirici, G. [1 ]
机构
[1] Univ Studi Firenze, Dept Agr Food Environm & Forestry, Florence, Italy
[2] Univ Studi Tuscia, Dipt lInnovazione Sistemi Biologici Agro, Viterbo, Italy
[3] Univ Studi Molise, Dipt Bioscienze Territorio, Pesche, Italy
[4] CREA, Res Ctr Forestry & Wood, Arezzo, Italy
[5] CREA, Res Ctr Forestry & Wood, Rome, Italy
[6] ERSAF Reg Agcy Serv Agr & Forestry, Milan, Italy
关键词
Big data; multitemporal classification; fully connected neural networks; forest tree crops; tree species mapping; deep learning; REMOTE-SENSING APPLICATIONS; CLASSIFICATION; METAANALYSIS; LANDSAT; AREA;
D O I
10.1080/15481603.2021.1988427
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
Poplars are one of the most widespread fast-growing tree species used for forest plantations. Owing to their distinct features (fast growth and short rotation) and the dependency on the timber price market, poplar plantations are characterized by large inter-annual fluctuations in their extent and distribution. Therefore, monitoring poplar plantations requires a frequent update of information - not feasible by National Forest Inventories due to their periodicity - achievable by remote sensing systems applications. In particular, the new Sentinel-2 mission, with a revisiting period of 5 days, represents a potentially efficient tool for meeting this need. In this paper, we present a deep learning approach for mapping poplar plantations using Sentinel-2 time series. A reference dataset of poplar plantations was available for a large study area of more than 46,000 km(2) in Northern Italy and served as training and testing data. Two classification methods were compared: (1) a fully connected neural network (also called multilayer perceptron), and (2) a traditional logistic regression. The performance of the two approaches was estimated through bootstrapping procedure with a confidence interval of 99%. Results indicated for deep learning an omission error rate of 2.77%+/- 2.76%, showing improvements compared to logistic regression, omission error rate = 8.91%+/- 4.79%.
引用
收藏
页码:1352 / 1368
页数:17
相关论文
共 50 条
  • [31] Burnt Forest Estimation from Sentinel-2 Imagery of Australia using Unsupervised Deep Learning
    Abid, Nosheen
    Malik, Muhammad Imran
    Shahzad, Muhammad
    Shafait, Faisal
    Ali, Haider
    Ghaffar, Muhammad Mohsin
    Weis, Christian
    Wehn, Norbert
    Liwicki, Marcus
    2021 INTERNATIONAL CONFERENCE ON DIGITAL IMAGE COMPUTING: TECHNIQUES AND APPLICATIONS (DICTA 2021), 2021, : 74 - 81
  • [32] Canopy Height Mapping for Plantations in Nigeria Using GEDI, Landsat, and Sentinel-2
    Tsao, Angela
    Nzewi, Ikenna
    Jayeoba, Ayodeji
    Ayogu, Uzoma
    Lobell, David B.
    REMOTE SENSING, 2023, 15 (21)
  • [33] Deep learning-based burned forest areas mapping via Sentinel-2 imagery: a comparative study
    Atasever, Umit Haluk
    Tercan, Emre
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2024, 31 (04) : 5304 - 5318
  • [34] Deep learning-based burned forest areas mapping via Sentinel-2 imagery: a comparative study
    Ümit Haluk Atasever
    Emre Tercan
    Environmental Science and Pollution Research, 2024, 31 : 5304 - 5318
  • [35] DEEP LEARNING - A NEW APPROACH FOR MULTI-LABEL SCENE CLASSIFICATION IN PLANETSCOPE AND SENTINEL-2 IMAGERY
    Shendryk, Iurii
    Rist, Yannik
    Lucas, Rob
    Ticehurst, Catherine
    Thorburn, Peter
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 1116 - 1119
  • [36] Unsupervised Deep Learning for Landslide Detection from Multispectral Sentinel-2 Imagery
    Shahabi, Hejar
    Rahimzad, Maryam
    Piralilou, Sepideh Tavakkoli
    Ghorbanzadeh, Omid
    Homayouni, Saied
    Blaschke, Thomas
    Lim, Samsung
    Ghamisi, Pedram
    REMOTE SENSING, 2021, 13 (22)
  • [37] Deep learning-based building height mapping using Sentinel-1 and Sentinel-2 data
    Cai, Bowen
    Shao, Zhenfeng
    Huang, Xiao
    Zhou, Xuechao
    Fang, Shenghui
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2023, 122
  • [38] An improved approach to estimating crop lodging percentage with Sentinel-2 imagery using machine learning
    Guan, Haixiang
    Huang, Jianxi
    Li, Xuecao
    Zeng, Yelu
    Su, Wei
    Ma, Yuyang
    Dong, Jinwei
    Niu, Quandi
    Wang, Wei
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2022, 113
  • [39] Automatic Cotton Mapping Using Time Series of Sentinel-2 Images
    Wang, Nan
    Zhai, Yongguang
    Zhang, Lifu
    REMOTE SENSING, 2021, 13 (07)
  • [40] Mapping of water bodies from sentinel-2 images using deep learning-based feature fusion approach
    Ankush Manocha
    Yasir Afaq
    Munish Bhatia
    Neural Computing and Applications, 2023, 35 : 9167 - 9179