Modelling the potential distribution of an invasive mosquito species: comparative evaluation of four machine learning methods and their combinations

被引:30
|
作者
Frueh, Linus [1 ,4 ]
Kampen, Helge [2 ]
Kerkow, Antje [1 ,3 ]
Schaub, Guenter A. [4 ]
Walther, Doreen [1 ]
Wieland, Ralf [1 ]
机构
[1] Leibniz Ctr Agr Landscape Res, Eberswalder Str 84, D-15374 Muncheberg, Germany
[2] Friedrich Loeffler Inst, Fed Res Inst Anim Hlth, Sudufer 10, D-17493 Greifswald, Insel Riems, Germany
[3] Free Univ Berlin, Konigin Luise Str 1-3, D-14195 Berlin, Germany
[4] Ruhr Univ Bochum, Univ Str 150, D-44801 Bochum, Germany
关键词
Decision tree; Logistic regression; Random forest; Support vector machine; Hasse diagram technique; Aedes japonicus japonicus; JAPONICUS-JAPONICUS DIPTERA; HASSE DIAGRAM TECHNIQUE; ENCEPHALITIS-VIRUS; EXPERIMENTAL TRANSMISSION; CULICIDAE; CLASSIFICATION; GERMANY; SPREAD; TOOL;
D O I
10.1016/j.ecolmodel.2018.08.011
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
We tested four machine learning methods for their performance in the classification of mosquito species occurrence related to weather variables: support vector machine, random forest, logistic regression and decision tree. The objective was to find a method which showed the most accurate model for the prediction of the potential geographical distribution of Aedes japonicus japonicus, an invasive mosquito species in Germany. The evaluation of the model trainings was conducted using derivations of a confusion matrix. Furthermore, we introduced two quality indices, 'selectivity' and 'exactness', for the evaluation of the spatial simulation, visualised through the Hasse diagram technique. From the evaluation results we can conclude that a specific combination of two to three models performs better in predicting the potential distribution of the mosquito species than a single model or the random combination of models.
引用
收藏
页码:136 / 144
页数:9
相关论文
共 50 条
  • [31] A comparative study of machine learning methods for time-to-event survival data for radiomics risk modelling
    Stefan Leger
    Alex Zwanenburg
    Karoline Pilz
    Fabian Lohaus
    Annett Linge
    Klaus Zöphel
    Jörg Kotzerke
    Andreas Schreiber
    Inge Tinhofer
    Volker Budach
    Ali Sak
    Martin Stuschke
    Panagiotis Balermpas
    Claus Rödel
    Ute Ganswindt
    Claus Belka
    Steffi Pigorsch
    Stephanie E. Combs
    David Mönnich
    Daniel Zips
    Mechthild Krause
    Michael Baumann
    Esther G. C. Troost
    Steffen Löck
    Christian Richter
    Scientific Reports, 7
  • [32] Insights into modelling and evaluation of thermodynamic and transport properties of refrigerants using machine-learning methods
    Noushabadi, Abolfazl Sajadi
    Lay, Ebrahim Nemati
    Dashti, Amir
    Mohammadi, Amir H.
    Chofreh, Abdoulmohammad Gholamzadeh
    Goni, Feybi Ariani
    Klemes, Jirf Jaromir
    ENERGY, 2023, 262
  • [33] A comparative study of machine learning methods for time-to-event survival data for radiomics risk modelling
    Leger, Stefan
    Zwanenburg, Alex
    Pilz, Karoline
    Lohaus, Fabian
    Linge, Annett
    Zoephel, Klaus
    Kotzerke, Joerg
    Schreiber, Andreas
    Tinhofer, Inge
    Budach, Volker
    Sak, Ali
    Stuschke, Martin
    Balermpas, Panagiotis
    Roedel, Claus
    Ganswindt, Ute
    Belka, Claus
    Pigorsch, Steffi
    Combs, Stephanie E.
    Moennich, David
    Zips, Daniel
    Krause, Mechthild
    Baumann, Michael
    Troost, Esther G. C.
    Loeck, Steffen
    Richter, Christian
    SCIENTIFIC REPORTS, 2017, 7
  • [34] Potential of machine learning and WorldView-2 images for recognizing endangered and invasive species in the Atlantic Rainforest
    Enzo Luigi Crisigiovanni
    Afonso Figueiredo Filho
    Vagner Alex Pesck
    Vanderlei Aparecido de Lima
    Annals of Forest Science, 2021, 78
  • [35] Potential of machine learning and WorldView-2 images for recognizing endangered and invasive species in the Atlantic Rainforest
    Crisigiovanni, Enzo Luigi
    Filho, Afonso Figueiredo
    Pesck, Vagner Alex
    de Lima, Vanderlei Aparecido
    ANNALS OF FOREST SCIENCE, 2021, 78 (02)
  • [36] A comparative study in birds: call-type-independent species and individual recognition using four machine-learning methods and two acoustic features
    Cheng, Jinkui
    Xie, Bengui
    Lin, Congtian
    Ji, Liqiang
    BIOACOUSTICS-THE INTERNATIONAL JOURNAL OF ANIMAL SOUND AND ITS RECORDING, 2012, 21 (02): : 157 - 171
  • [37] Global distribution modelling of macrophomina phaseolina (tassi) goid: a comparative assessment using ensemble machine learning tools
    Manish Mathur
    Preet Mathur
    Australasian Plant Pathology, 2023, 52 : 353 - 371
  • [38] Global distribution modelling of macrophomina phaseolina (tassi) goid: a comparative assessment using ensemble machine learning tools
    Mathur, Manish
    Mathur, Preet
    AUSTRALASIAN PLANT PATHOLOGY, 2023, 52 (04) : 353 - 371
  • [39] Comparative Analysis of Machine Learning Methods for Assessing the Predictive Potential of Risk Factors for the Development of Cardiovascular Diseases
    Plekhova, N. G.
    Nevzorova, V. A.
    Chernenko, I. N.
    Priseko, L. G.
    Shestopalov, E. Yu.
    ARTIFICIAL INTELLIGENCE TRENDS IN SYSTEMS, VOL 2, 2022, 502 : 186 - 192
  • [40] Machine learning applied to species occurrence and interactions: the missing link in biodiversity assessment and modelling of Antarctic plankton distribution
    Grillo, Marco
    Schiaparelli, Stefano
    Durazzano, Tiziana
    Guglielmo, Letterio
    Granata, Antonia
    Huettmann, Falk
    ECOLOGICAL PROCESSES, 2024, 13 (01)