Image Reconstruction in Quantitative Photoacoustic Tomography with the Simplified P2 Approximation

被引:8
|
作者
Frederick, Christina [1 ]
Ren, Kui [2 ,3 ]
Vallelian, Sarah [4 ]
机构
[1] New Jersey Inst Technol, Dept Math Sci, University Hts, NJ 07102 USA
[2] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
[3] Univ Texas Austin, Inst Computat Engn & Sci, Austin, TX 78712 USA
[4] North Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
来源
SIAM JOURNAL ON IMAGING SCIENCES | 2018年 / 11卷 / 04期
基金
美国国家科学基金会;
关键词
photoacoustic tomography; radiative transport equation; simplified P-2 approximation; diffusion approximation; hybrid inverse problems; hybrid imaging; image reconstruction; numerical optimization; OPTICAL TOMOGRAPHY; INVERSION FORMULAS; CONSTRAINED OPTIMIZATION; TRANSPORT; EQUATIONS; SCATTERING; ALGORITHM; SERIES; MODEL;
D O I
10.1137/18M1195656
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Photoacoustic tomography (PAT) is a hybrid imaging modality that intends to construct high resolution images of optical properties of heterogeneous media from measured acoustic data generated by the photoacoustic effect. To date, most of the model-based quantitative image reconstructions in PAT are performed with either the radiative transport equation or its classical diffusion approximation as the model of light propagation. In this work, we study quantitative image reconstructions in PAT using the simplified P-2 equations as the light propagation model. We provide numerical evidences on the feasibility of this approach and derive some stability results as theoretical justifications.
引用
收藏
页码:2847 / 2876
页数:30
相关论文
共 50 条
  • [21] Quantitative PAT with simplified P N approximation
    Zhao, Hongkai
    Zhong, Yimin
    INVERSE PROBLEMS, 2021, 37 (05)
  • [22] The P-transform and photoacoustic image reconstruction
    Liu, PY
    PHYSICS IN MEDICINE AND BIOLOGY, 1998, 43 (03): : 667 - 674
  • [23] Multigrid-based reconstruction algorithm for quantitative photoacoustic tomography
    Li, Shengfu
    Montcel, Bruno
    Yuan, Zhen
    Liu, Wanyu
    Vray, Didier
    BIOMEDICAL OPTICS EXPRESS, 2015, 6 (07): : 2424 - 2434
  • [24] Single-stage reconstruction algorithm for quantitative photoacoustic tomography
    Haltmeier, Markus
    Neumann, Lukas
    Rabanser, Simon
    INVERSE PROBLEMS, 2015, 31 (06)
  • [25] A high contrast and resolution reconstruction algorithm in quantitative photoacoustic tomography
    Dey, Anwesa
    Borzi, Alfio
    Roy, Souvik
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 451
  • [26] Image reconstruction in photoacoustic tomography with variable speed of sound using a higher-order geometrical acoustics approximation
    Modgil, Dimple
    Anastasio, Mark A.
    La Riviere, Patrick J.
    JOURNAL OF BIOMEDICAL OPTICS, 2010, 15 (02)
  • [27] Image reconstruction in photoacoustic tomography with variable speed of sound using a higher-order geometrical acoustics approximation
    Modgil, Dimple
    Anastasio, Mark A.
    Wang, Kun
    La Riviere, Patrick J.
    PHOTONS PLUS ULTRASOUND: IMAGING AND SENSING 2009, 2009, 7177
  • [28] Image reconstruction in photoacoustic tomography with truncated cylindrical measurement apertures
    Anastasio, Mark A.
    Zhang, Jin
    PHOTONS PLUS ULTRASOUND: IMAGING AND SENSING 2006, 2006, 6086
  • [29] Image reconstruction in photoacoustic tomography involving layered acoustic media
    Schoonover, Robert W.
    Anastasio, Mark A.
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2011, 28 (06) : 1114 - 1120
  • [30] Comparing Deep Learning Frameworks for Photoacoustic Tomography Image Reconstruction
    Hsu, Ko-Tsung
    Guan, Steven
    Chitnis, Parag, V
    PHOTOACOUSTICS, 2021, 23