High-Temperature Spin Crossover in Two Solvent-Free Coordination Polymers with Unusual High Thermal Stability

被引:15
|
作者
Liu, Wei [1 ]
Bao, Xin [2 ]
Li, Jin-Yan [1 ]
Qin, Yu-Lian [1 ]
Chen, Yan-Cong [1 ]
Ni, Zhao-Ping [1 ]
Tong, Ming-Liang [1 ]
机构
[1] Sun Yat Sen Univ, Key Lab Bioinorgan & Synthet Chem, Minist Educ, Sch Chem & Chem Engn, Guangzhou 510275, Guangdong, Peoples R China
[2] Nanjing Univ Sci & Technol, Dept Chem, Sch Chem Engn, Nanjing 210094, Jiangsu, Peoples R China
关键词
METAL-ORGANIC FRAMEWORK; IRON(II) COMPLEXES; ROOM-TEMPERATURE; TRANSITION; BEHAVIOR; GUEST; HYSTERESIS; LAYER;
D O I
10.1021/acs.inorgchem.5b00119
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Two solvent-free two-dimensional (2D) coordination polymers, (2)(infinity)[Fe(ptim)(2))] (1) and 2(infinity)[Fe(ptpy)(2)] (2) (Hptim = 2-(5-(4-(1H-imidazol-1-yl)phenyl)-4H-1,2,4-triazol-3-yl)pyridine; Hptpy = 2-(5-(4-(pyridin-3-yl)phenyl)-4H-1,2,4-triazol-3-yl)pyridine); have been successfully prepared by solvothermal reactions. Their iron atoms are bridged by the corresponding multidentate anionic ligands into dense neutral structures. The magnetic data reveal that complexes 1 and 2 are rare examples exhibiting reversible one-step high-temperature spin crossover behaviors with spin transition temperatures of 419 and 416 K, respectively. Moreover, these structures also display remarkable thermal stability up to 714 K (for 1) and 690 K (for 2), which are confirmed by thermogravimetric and variable-temperature powder X-ray diffraction analyses.
引用
收藏
页码:3006 / 3011
页数:6
相关论文
共 50 条
  • [21] Thermal stability of high-temperature materials. Part 1
    Kolomeitsev, VV
    Suvorov, SA
    Kolomeitseva, EF
    REFRACTORIES AND INDUSTRIAL CERAMICS, 2004, 45 (05) : 327 - 332
  • [22] Thermal Stability of Gold Nanorods for High-Temperature Plasmonic Sensing
    Joy, Nicholas A.
    Janiszewski, Brian K.
    Novak, Steven
    Johnson, Timothy W.
    Oh, Sang-Hyun
    Raghunathan, Ananthan
    Hartley, John
    Carpenter, Michael A.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (22): : 11718 - 11724
  • [23] Thermal stability of high-temperature materials. Part 2
    Kolomeitsev, VB
    Suvorov, SA
    Kolomeitseva, EF
    Kolomeitseva, OV
    REFRACTORIES AND INDUSTRIAL CERAMICS, 2004, 45 (05) : 364 - 372
  • [24] STUDY OF HIGH-TEMPERATURE THERMAL STABILITY OF MAX PHASES IN VACUUM
    Low, I. M.
    Pang, W. K.
    Kennedy, S. J.
    Smith, R. I.
    STRATEGIC MATERIALS AND COMPUTATIONAL DESIGN, 2010, 31 (10): : 171 - 180
  • [25] Numerical simulation and experiment on thermal stability of high-temperature superconductors
    Wu, Chun-Li
    Xiao, Jing-Kui
    Dongbei Daxue Xuebao/Journal of Northeastern University, 2008, 29 (03): : 347 - 349
  • [26] Thermal stability of ammonium nitrate in high-temperature coal seam
    Xu, Zhi-Xiang
    Wang, Qian
    Zhu, Xun
    Fu, Xiao-Qi
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2017, 130 (02) : 1171 - 1179
  • [27] Thermal stability of high-temperature materials. Part 1
    V. V. Kolomeitsev
    S. A. Suvorov
    E. F. Kolomeitseva
    Refractories and Industrial Ceramics, 2004, 45 : 327 - 332
  • [28] Thermal stability of ammonium nitrate in high-temperature coal seam
    Zhi-Xiang Xu
    Qian Wang
    Xun Zhu
    Xiao-Qi Fu
    Journal of Thermal Analysis and Calorimetry, 2017, 130 : 1171 - 1179
  • [29] Thermal stability of high-temperature materials. Part 2
    V. B. Kolomeitsev
    S. A. Suvorov
    E. F. Kolomeitseva
    O. V. Kolomeitseva
    Refractories and Industrial Ceramics, 2004, 45 : 364 - 372
  • [30] A polymer nanocomposite for high-temperature energy storage with thermal stability
    Ge, Pengzu
    Li, Lili
    Jiang, Mengquan
    Wang, Gaofeng
    Wen, Fei
    Gao, Xiaoyi
    CELL REPORTS PHYSICAL SCIENCE, 2025, 6 (01):