An empirical Bayes method for robust variance estimation in detecting DEGs using microarray data

被引:2
|
作者
You, Na [1 ]
Wang, Xueqin [1 ]
机构
[1] Sun Yat Sen Univ, Southern China Ctr Stat Sci, Sch Math, Guangzhou 510275, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Microarray; differentially expressed gene; hierarchical model; link function; empirical Bayes method; EXPRESSION;
D O I
10.1142/S0219720017500202
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The microarray technology is widely used to identify the differentially expressed genes due to its high throughput capability. The number of replicated microarray chips in each group is usually not abundant. It is an effcient way to borrow information across different genes to improve the parameter estimation which suffers from the limited sample size. In this paper, we use a hierarchical model to describe the dispersion of gene expression profiles and model the variance through the gene expression level via a link function. A heuristic algorithm is proposed to estimate the hyper-parameters and link function. The differentially expressed genes are identified using a multiple testing procedure. Compared to SAM and LIMMA, our proposed method shows a significant superiority in term of detection power as the false discovery rate being controlled.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] An Empirical Bayes Method for Chi-Squared Data
    Du, Lilun
    Hu, Inchi
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2022, 117 (537) : 334 - 347
  • [42] Robust Bayes estimation using the density power divergence
    Abhik Ghosh
    Ayanendranath Basu
    Annals of the Institute of Statistical Mathematics, 2016, 68 : 413 - 437
  • [43] Robust Bayes estimation using the density power divergence
    Ghosh, Abhik
    Basu, Ayanendranath
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2016, 68 (02) : 413 - 437
  • [44] Comparison of three nonparametric density estimation techniques using Bayes' classifiers applied to microarray data analysis
    Peters, CA
    Valafar, F
    METMBS'03: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON MATHEMATICS AND ENGINEERING TECHNIQUES IN MEDICINE AND BIOLOGICAL SCIENCES, 2003, : 119 - 125
  • [45] EMPIRICAL BAYES APPROACH TO THE ESTIMATION OF UNSAFETY - THE MULTIVARIATE REGRESSION METHOD
    HAUER, E
    ACCIDENT ANALYSIS AND PREVENTION, 1992, 24 (05): : 457 - 477
  • [46] Nonparametric variance estimation in the analysis of microarray data: a measurement error approach
    Carroll, Raymond J.
    Wang, Yuedong
    BIOMETRIKA, 2008, 95 (02) : 437 - 449
  • [47] Variance Component Estimation for Mixed Model Analysis of cDNA Microarray Data
    Sarholz, Barbara
    Piepho, Hans-Peter
    BIOMETRICAL JOURNAL, 2008, 50 (06) : 927 - 939
  • [48] Using hidden Markov chains and empirical Bayes change-point estimation for transect data
    Hoef, JMV
    Cressie, N
    ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 1997, 4 (03) : 247 - 264
  • [49] Using hidden Markov chains and empirical Bayes change-point estimation for transect data
    Ver Hoef J.M.
    Cressie N.
    Environmental and Ecological Statistics, 1997, 4 (3) : 247 - 264
  • [50] Reviewing Image Data: Detecting Forgery Using a Robust Forensic Method
    Mishra M.
    Jain N.K.
    Kumar A.
    SN Computer Science, 4 (6)