An empirical Bayes method for robust variance estimation in detecting DEGs using microarray data

被引:2
|
作者
You, Na [1 ]
Wang, Xueqin [1 ]
机构
[1] Sun Yat Sen Univ, Southern China Ctr Stat Sci, Sch Math, Guangzhou 510275, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Microarray; differentially expressed gene; hierarchical model; link function; empirical Bayes method; EXPRESSION;
D O I
10.1142/S0219720017500202
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The microarray technology is widely used to identify the differentially expressed genes due to its high throughput capability. The number of replicated microarray chips in each group is usually not abundant. It is an effcient way to borrow information across different genes to improve the parameter estimation which suffers from the limited sample size. In this paper, we use a hierarchical model to describe the dispersion of gene expression profiles and model the variance through the gene expression level via a link function. A heuristic algorithm is proposed to estimate the hyper-parameters and link function. The differentially expressed genes are identified using a multiple testing procedure. Compared to SAM and LIMMA, our proposed method shows a significant superiority in term of detection power as the false discovery rate being controlled.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Empirical Bayes analysis of variance component models for microarray data
    Feng, S.
    Wolfinger, R. D.
    Chu, T. M.
    Gibson, G. C.
    McGraw, L. A.
    JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2006, 11 (02) : 197 - 209
  • [2] Empirical Bayes analysis of variance component models for microarray data
    S. Feng
    R. D. Wolfinger
    T. M. Chu
    G. C. Gibson
    L. A. McGraw
    Journal of Agricultural, Biological, and Environmental Statistics, 2006, 11
  • [3] A heavy-tailed empirical Bayes method for replicated microarray data
    Salas-Gonzalez, Diego
    Kuruoglu, Ercan E.
    Ruiz, Diego P.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2009, 53 (05) : 1535 - 1546
  • [4] Empirical Bayes analysis of unreplicated microarray data
    HyungJun Cho
    Jaewoo Kang
    Jae K. Lee
    Computational Statistics, 2009, 24 : 393 - 408
  • [5] Empirical Bayes analysis of unreplicated microarray data
    Cho, HyungJun
    Kang, Jaewoo
    Lee, Jae K.
    COMPUTATIONAL STATISTICS, 2009, 24 (03) : 393 - 408
  • [6] NONPARAMETRIC BAYES AND EMPIRICAL BAYES ESTIMATION OF VARIANCE FROM STRATIFIED SAMPLES
    LAHIRI, P
    TIWARI, RC
    SANKHYA-SERIES B-APPLIED AND INTERDISCIPLINARY STATISTICS, 1991, 53 : 105 - 118
  • [7] Variance estimation in the analysis of microarray data
    Wang, Yuedong
    Ma, Yanyuan
    Carroll, Raymond J.
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2009, 71 : 425 - 445
  • [8] DETECTING MUTATIONS IN MIXED SAMPLE SEQUENCING DATA USING EMPIRICAL BAYES
    Muralidharan, Omkar
    Natsoulis, Georges
    Bell, John
    Ji, Hanlee
    Zhang, Nancy R.
    ANNALS OF APPLIED STATISTICS, 2012, 6 (03): : 1047 - 1067
  • [9] β-empirical Bayes inference and model diagnosis of microarray data
    Mohammad Manir Hossain Mollah
    M Nurul Haque Mollah
    Hirohisa Kishino
    BMC Bioinformatics, 13
  • [10] β-empirical Bayes inference and model diagnosis of microarray data
    Mollah, Mohammad Manir Hossain
    Mollah, M. Nurul Haque
    Kishino, Hirohisa
    BMC BIOINFORMATICS, 2012, 13