Some remarks on Morse theory for posets, homological Morse theory and finite manifolds

被引:10
|
作者
Gabriel Minian, Elias [1 ]
机构
[1] Univ Buenos Aires, Dept Matemat IMAS, FCEyN, Buenos Aires, DF, Argentina
关键词
Morse theory; Simplicial complexes; Finite topological spaces; Posets; Cellular homology; Combinatorial manifolds; Homology manifolds; HOMOTOPY;
D O I
10.1016/j.topol.2012.05.027
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a version of discrete Morse theory for posets. This theory studies the topology of the order complexes K(X) of h-regular posets X from the critical points of admissible matchings on X. Our approach is related to R. Forman's discrete Morse theory for CW-complexes and generalizes Forman and Chari's results on the face posets of regular CW-complexes. We also introduce a homological variant of the theory that can be used to study the topology of triangulable homology manifolds by means of their order triangulations. (c) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:2860 / 2869
页数:10
相关论文
共 50 条
  • [31] Fundamental Theorems of Morse Theory for Optimization on Manifolds with Corners
    M. Shida
    Journal of Optimization Theory and Applications, 2000, 106 : 683 - 688
  • [32] Embedded Morse Theory and Relative Splitting of Cobordisms of Manifolds
    Maciej Borodzik
    Mark Powell
    The Journal of Geometric Analysis, 2016, 26 : 57 - 87
  • [33] Two-orbit Kahler manifolds and Morse theory
    Gori, A
    Podestà, F
    MONATSHEFTE FUR MATHEMATIK, 2004, 143 (02): : 105 - 114
  • [34] On handle theory for Morse-Bott critical manifolds
    Lima, D. V. S.
    Manzoli Neto, O.
    de Rezende, K. A.
    GEOMETRIAE DEDICATA, 2019, 202 (01) : 265 - 309
  • [35] Embedded Morse Theory and Relative Splitting of Cobordisms of Manifolds
    Borodzik, Maciej
    Powell, Mark
    JOURNAL OF GEOMETRIC ANALYSIS, 2016, 26 (01) : 57 - 87
  • [36] Morse theory and conjugacy classes of finite subgroups
    Brady, Noel
    Clay, Matt
    Dani, Pallavi
    GEOMETRIAE DEDICATA, 2008, 135 (01) : 15 - 22
  • [37] Morse theory and conjugacy classes of finite subgroups
    Noel Brady
    Matt Clay
    Pallavi Dani
    Geometriae Dedicata, 2008, 135 : 15 - 22
  • [38] APPLICATION OF MORSE THEORY TO SOME HOMOGENEOUS SPACES
    RAMANUJA.S
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 16 (03): : 513 - &
  • [39] On topological Morse theory
    Marco Degiovanni
    Journal of Fixed Point Theory and Applications, 2011, 10 : 197 - 218
  • [40] AN INVESTIGATION IN MORSE THEORY
    ROTH, JP
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1954, 60 (02) : 179 - 179