Some remarks on Morse theory for posets, homological Morse theory and finite manifolds

被引:10
|
作者
Gabriel Minian, Elias [1 ]
机构
[1] Univ Buenos Aires, Dept Matemat IMAS, FCEyN, Buenos Aires, DF, Argentina
关键词
Morse theory; Simplicial complexes; Finite topological spaces; Posets; Cellular homology; Combinatorial manifolds; Homology manifolds; HOMOTOPY;
D O I
10.1016/j.topol.2012.05.027
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a version of discrete Morse theory for posets. This theory studies the topology of the order complexes K(X) of h-regular posets X from the critical points of admissible matchings on X. Our approach is related to R. Forman's discrete Morse theory for CW-complexes and generalizes Forman and Chari's results on the face posets of regular CW-complexes. We also introduce a homological variant of the theory that can be used to study the topology of triangulable homology manifolds by means of their order triangulations. (c) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:2860 / 2869
页数:10
相关论文
共 50 条
  • [1] Algebraic Morse theory and homological perturbation theory
    Skoldberg, Emil
    ALGEBRA & DISCRETE MATHEMATICS, 2018, 26 (01): : 124 - 129
  • [2] Morse-Bott theory on posets and a homological Lusternik-Schnirelmann theorem
    Fernandez-Ternero, D.
    Macias-Virgos, E.
    Mosquera-Lois, D.
    Vilches, J. A.
    JOURNAL OF TOPOLOGY AND ANALYSIS, 2024, 16 (03) : 323 - 346
  • [3] Fundamental theorems of Morse theory on posets
    Fernandez-Ternero, D.
    Macias-Virgos, E.
    Mosquera-Lois, D.
    Scoville, N. A.
    Vilches, J. A.
    AIMS MATHEMATICS, 2022, 7 (08): : 14922 - 14945
  • [4] Morse theory for manifolds with boundary
    Borodzik, Maciej
    Nemethi, Andras
    Ranicki, Andrew
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2016, 16 (02): : 971 - 1023
  • [5] Morse Theory on Banach Manifolds
    王体翔
    Acta Mathematica Sinica,English Series, 1989, (03) : 250 - 262
  • [6] MORSE THEORY ON BANACH MANIFOLDS
    TROMBA, AJ
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1975, 281 (2-3): : 101 - 104
  • [7] MORSE THEORY ON BANACH MANIFOLDS
    UHLENBECK, K
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1970, 76 (01) : 105 - +
  • [8] Morse Theory on Banach Manifolds
    王体翔
    Acta Mathematica Sinica, 1989, (03) : 250 - 262
  • [9] Morse theory for geodesics in conical manifolds
    Ghimenti, Marco
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2007, 4 (02) : 229 - 244
  • [10] Morse theory and Lyapunov stability on manifolds
    Moulay E.
    Journal of Mathematical Sciences, 2011, 177 (3) : 419 - 425