The Hyperbolic Metric on the Complement of the Integer Lattice Points in the Plane

被引:1
|
作者
Matsuzaki, Katsuhiko [1 ]
机构
[1] Waseda Univ, Sch Educ, Dept Math, Tokyo 1698050, Japan
关键词
Absolute norm; Continued fraction; Hyperbolic metric; Mathematica; Once-punctured torus; Quasi-isometry; Simple closed geodesic;
D O I
10.1007/978-3-319-48812-7_31
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A domain in the plane obtained by removing all integer lattice points admits the hyperbolic metric, which is the rank 2 Abelian cover of the once-punctured square tours. We compare the hyperbolic metric of this domain with a scaled Euclidean metric in the complement of the cusp neighborhoods. They are quasi-isometric. We investigate the best possible quasi-isometry constant relying on numerical experiment by Mathematica.
引用
收藏
页码:247 / 252
页数:6
相关论文
共 50 条
  • [21] THE BETHE LATTICE - A REGULAR TILING OF THE HYPERBOLIC PLANE
    MOSSERI, R
    SADOC, JF
    JOURNAL DE PHYSIQUE LETTRES, 1982, 43 (08): : L249 - L252
  • [22] On the sets of points on the plane with integer-valued distances
    Avdeev, N. N.
    Semenov, E. M.
    MATHEMATICAL NOTES, 2016, 100 (5-6) : 743 - 746
  • [23] On the sets of points on the plane with integer-valued distances
    N. N. Avdeev
    E. M. Semenov
    Mathematical Notes, 2016, 100 : 743 - 746
  • [24] INTEGER POINTS OF ANALYTIC FUNCTIONS IN A HALF-PLANE
    Fletcher, Alastair N.
    Langley, J. K.
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2009, 52 : 619 - 630
  • [25] NUMBER OF COLLINEARITIES OF 3 POINTS TAKEN FROM INTEGER LATTICE POINTS OF A SQUARE
    BONNICE, WE
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (01): : A40 - A40
  • [26] Locating points in the pentagonal rectangular tiling of the hyperbolic plane
    Chelghoum, K
    Margenstern, M
    Martin, B
    Pecci, I
    7TH WORLD MULTICONFERENCE ON SYSTEMICS, CYBERNETICS AND INFORMATICS, VOL V, PROCEEDINGS: COMPUTER SCIENCE AND ENGINEERING: I, 2003, : 25 - 30
  • [28] METRIC PLANE RECTIFICATION USING SYMMETRIC VANISHING POINTS
    Lefler, M.
    Hel-Or, H.
    Hel-Or, Y.
    2013 20TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2013), 2013, : 300 - 304
  • [29] Bisections of Two Sets of Points in the Plane Lattice
    Uno, Miyuki
    Kawano, Tomoharu
    Kano, Mikio
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2009, E92A (02): : 502 - 507
  • [30] APPROXIMATION OF POINTS IN THE PLANE BY GENERIC LATTICE ORBITS
    Kelmer, Dubi
    JOURNAL OF MODERN DYNAMICS, 2017, 11 : 143 - 153