Prognoses of diameter and height of trees of eucalyptus using artificial intelligence

被引:67
|
作者
Vieira, Giovanni Correia [1 ]
de Mendonca, Adriano Ribeiro [1 ]
da Silva, Gilson Fernandes [1 ]
Zanetti, Sidney Sara [1 ]
da Silva, Mayra Marques [1 ]
dos Santos, Alexandre Rosa [1 ]
机构
[1] Fed Univ Espirito Santo UFES, PostGrad Programme Forest Sci, Av Governador Lindemberg 316, BR-29550000 Jeronimo Monteiro, ES, Brazil
关键词
Artificial neural networks; Adaptive neuro-fuzzy inference system; Forest measurement; Forest inventory; NEURAL-NETWORK APPLICATION; INDIVIDUAL TREES; LAND SUITABILITY; GROWTH-MODELS; WHITE SPRUCE; FOREST; MORTALITY; PINE; VOLUME; PREDICTION;
D O I
10.1016/j.scitotenv.2017.11.138
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Models of individual trees are composed of sub-models that generally estimate competition, mortality, and growth in height and diameter of each tree. They are usually adopted when we want more detailed information to estimate forest multiproduct. In these models, estimates of growth in diameter at 1.30 m above the ground (DBH) and total height (H) are obtained by regression analysis. Recently, artificial intelligence techniques (AIT) have been used with satisfactory performance in forest measurement. Therefore, the objective of this study was to evaluate the performance of two AIT, artificial neural networks and adaptive neuro-fuzzy inference system, to estimate the growth in DBH and H of eucalyptus trees. We used data of continuous forest inventories of eucalyptus, with annual measurements of DBH, H, and the dominant height of trees of 398 plots, plus two qualitative variables: genetic material and site index. It was observed that the two AIT showed accuracy in growth estimation of DBH and H. Therefore, the two techniques discussed can be used for the prognosis of DBH and H in even-aged eucalyptus stands. The techniques used could also be adapted to other areas and forest species. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:1473 / 1481
页数:9
相关论文
共 50 条
  • [21] Height-diameter allometry of tropical forest trees
    Feldpausch, T. R.
    Banin, L.
    Phillips, O. L.
    Baker, T. R.
    Lewis, S. L.
    Quesada, C. A.
    Affum-Baffoe, K.
    Arets, E. J. M. M.
    Berry, N. J.
    Bird, M.
    Brondizio, E. S.
    de Camargo, P.
    Chave, J.
    Djagbletey, G.
    Domingues, T. F.
    Drescher, M.
    Fearnside, P. M.
    Franca, M. B.
    Fyllas, N. M.
    Lopez-Gonzalez, G.
    Hladik, A.
    Higuchi, N.
    Hunter, M. O.
    Iida, Y.
    Salim, K. A.
    Kassim, A. R.
    Keller, M.
    Kemp, J.
    King, D. A.
    Lovett, J. C.
    Marimon, B. S.
    Marimon-Junior, B. H.
    Lenza, E.
    Marshall, A. R.
    Metcalfe, D. J.
    Mitchard, E. T. A.
    Moran, E. F.
    Nelson, B. W.
    Nilus, R.
    Nogueira, E. M.
    Palace, M.
    Patino, S.
    Peh, K. S. -H.
    Raventos, M. T.
    Reitsma, J. M.
    Saiz, G.
    Schrodt, F.
    Sonke, B.
    Taedoumg, H. E.
    Tan, S.
    BIOGEOSCIENCES, 2011, 8 (05) : 1081 - 1106
  • [22] DEVELOPMENT OF THE BREAST HEIGHT DIAMETER OF FOREST TREES AND STANDS
    POLENO, Z
    PRACE VULHM-REPORTS OF THE FORESTRY AND GAME MANAGEMENT RESEARCH INSTITUTE, 1981, (58): : 91 - 104
  • [23] Evaluation of the Quality of Measurement of Diameter at Breast Height of Trees
    Chiou, Chyi-Rong
    Huang, Chi-Ching
    Taiwan Journal of Forest Science, 2023, 38 (04): : 303 - 319
  • [24] ESTIMATION OF HEIGHT OF EUCALYPTUS TREES WITH NEUROEVOLUTION OF AUGMENTING TOPOLOGIES (NEAT)
    Breda Binoti, Daniel Henrique
    Duarte, Paulo Junio
    Marques da Silva, Mayra Luiza
    da Silva, Gilson Fernandes
    Leite, Helio Garcia
    de Mendonca, Adriano Ribeiro
    Lima De Andrade, Valdir Carlos
    Davila Vega, Andreina Epifania
    REVISTA ARVORE, 2017, 41 (03):
  • [25] Online Estimation of Diameter at Breast Height (DBH) of Forest Trees Using a Handheld LiDAR
    Proudman, Alexander
    Ramezani, Milad
    Fallon, Maurice
    10TH EUROPEAN CONFERENCE ON MOBILE ROBOTS (ECMR 2021), 2021,
  • [26] A Fully Automatic Estimation of Tear Meniscus Height Using Artificial Intelligence
    Wang, Shaopan
    He, Xin
    He, Jiezhou
    Li, Shuang
    Chen, Yuguang
    Xu, Changsheng
    Lin, Xiang
    Kang, Jie
    Li, Wei
    Luo, Zhiming
    Liu, Zuguo
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2023, 64 (13)
  • [27] ESTIMATION OF EUCALYPTUS TREE HEIGHT IN CLONAL AND PROGENY TESTS USING ARTIFICIAL NEURAL NETWORKS
    de Albuquerque Santos, Ana Carolina
    Almeida, Filipe Monteiro
    Souza, Ramon Barreto
    Chaves, Raul
    de Paiva, Haroldo Nogueira
    Breda Binot, Daniel Henrique
    Leite, Helio Garcia
    Farias, Aline Araujo
    REVISTA ARVORE, 2017, 41 (06):
  • [28] Multi-volume modeling of Eucalyptus trees using regression and artificial neural networks
    de Azevedo, Gileno Brito
    Tomiazzi, Heitor Vicensotto
    de Oliveira Sousa Azevedo, Glauce Tais
    Ribeiro Teodoro, Larissa Pereira
    Teodoro, Paulo Eduardo
    Pereira de Souza, Marcos Talvani
    Batista, Tays Silva
    Eufrade-Junior, Humberto de Jesus
    Sebastiao Guerra, Saulo Philipe
    PLOS ONE, 2020, 15 (09):
  • [29] FUZZY AND NEURO-FUZZY ESTIMATES OF THE TOTAL HEIGHT OF EUCALYPTUS TREES
    Silva, Ricardo M. de A.
    Brandao, Fillipe G.
    Baleeiro, Gleimar B.
    Valentim, Felipe L.
    de Mendonca, Adriano R.
    Pires, Danilo M.
    APPLIED COMPUTING 2008, VOLS 1-3, 2008, : 1772 - +
  • [30] Height-diameter allometry for the management of city trees in the tropics
    Song, Xiao Ping
    Lai, Hao Ran
    Wijedasa, Lahiru S.
    Tan, Puay Yok
    Edwards, Peter J.
    Richards, Daniel R.
    ENVIRONMENTAL RESEARCH LETTERS, 2020, 15 (11)