Effects of TiC particle size on microstructures and mechanical properties of B4C-TiB2 composites prepared by reactive hot-press sintering of TiC-B mixtures

被引:25
|
作者
Ding, Xiang [1 ,2 ]
Pan, Kaikai [1 ,2 ]
Liu, Zetan [1 ,2 ,3 ]
Zhu, Jianhua [1 ,2 ]
Deng, Xiangong [3 ]
Li, Jiamao [3 ]
Ran, Songlin [1 ,2 ]
机构
[1] Anhui Univ Technol, Key Lab Met Emiss Reduct & Resources Recycling, Minist Educ, Maanshan 243002, Peoples R China
[2] Anhui Univ Technol, Anhui Prov Key Lab Met Engn & Resources Recycling, Maanshan 243002, Peoples R China
[3] Anhui Univ Technol, Sch Mat Sci & Engn, Maanshan 243002, Peoples R China
基金
中国国家自然科学基金;
关键词
B4C; TiB2; Reactive sintering; Microstructures; Mechanical properties; DENSIFICATION; POWDERS;
D O I
10.1016/j.ceramint.2020.01.041
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Effects of the starting TiC particle size on the phase compositions, microstructures and mechanical properties of B4C-TiB2 composites prepared by reactive hot-press sintering of TiC-B mixtures were investigated. B4C-TiB2 composites were prepared from a single grade amorphous B powder (0.9 pm) and three different TiC powders (50 nm, 0.8 mu m and 3.0 mu m), respectively. The composites prepared from 50 nm and 3.0 pm TiC powders exhibited finer microstructures and higher hardness (29-30 GPa). The composite prepared from 0.8 mu m TiC powder showed the coarsest microstructure but possessed the highest strength of 659 MPa due to its homogenous phase distribution without C impurity and abnormal grain growth that presented in the other two composites. The results indicated that the mechanical properties of B4C-TiB2 composite could be controlled by the particle size matching between TiC and B powders.
引用
收藏
页码:10425 / 10430
页数:6
相关论文
共 50 条
  • [21] Study on the microstructure, recrystallization, and mechanical properties of hot-press sintered (TiC+B4C)/6061Al composites during hot rolling
    Liu, Zhaosong
    Luo, Zongan
    Zhang, Xin
    Yang, Jinsong
    Feng, Yingying
    Peng, Wu
    MATERIALS CHARACTERIZATION, 2024, 216
  • [22] Reactive sintering of B4C-TiB2 composites from B4C and TiO2 precursors
    Svec, Pavol
    Gabrisova, Zuzana
    Brusilova, Alena
    PROCESSING AND APPLICATION OF CERAMICS, 2020, 14 (04) : 329 - 335
  • [23] Effect of sintering temperature and TiB2 content on the grain size of B4C-TiB2 composites
    Liu, Yingying
    Li, Zhenqin
    Peng, Yusi
    Huang, Yihua
    Huang, Zhengren
    Zhang, Deku
    MATERIALS TODAY COMMUNICATIONS, 2020, 23
  • [25] Effect of TiB2 particles on microstructure and mechanical properties of B4C-TiB2 ceramics prepared by hot pressing
    Guo, Wenchao
    He, Qianglong
    Wang, Aiyang
    Tian, Tian
    Liu, Chun
    Hu, Lanxin
    Wang, Weimin
    Wang, Hao
    Fu, Zhengyi
    CERAMICS INTERNATIONAL, 2023, 49 (03) : 4403 - 4411
  • [26] Pressureless sintering of B4C-TiB2 composites with Al additions
    Mashhadi, Mehri
    Taheri-Nassaj, Ehsan
    Mashhadi, Maryam
    Sglavo, Vincenzo M.
    CERAMICS INTERNATIONAL, 2011, 37 (08) : 3229 - 3235
  • [27] Effect of different additives on the sintering ability and the properties of B4C-TiB2 composites
    Heydari, M. Saeedi
    Baharvandi, H. R.
    INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2015, 51 : 61 - 69
  • [28] Mechanical properties and deformation mechanisms of B4C-TiB2 eutectic composites
    White, Ryan M.
    Dickey, Elizabeth C.
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2014, 34 (09) : 2043 - 2050
  • [29] Synthesis mechanism and mechanical properties of TiB2-SiC composites fabricated with the B4C-TiC-Si system by reactive hot pressing
    Zhang, Zhixiao
    Xu, Chongjun
    Du, Xianwu
    Li, Zili
    Wang, Jilin
    Xing, Weihong
    Sheng, Yuan
    Wang, Weimin
    Fu, Zhengyi
    JOURNAL OF ALLOYS AND COMPOUNDS, 2015, 619 : 26 - 30
  • [30] Microstructure and mechanical properties of B4C-TiB2 composite ceramic fabricated by reactive spark plasma sintering
    Wang, Shuo
    Yuan, Juntang
    Han, Wenchao
    Yin, Zengbin
    INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2020, 92