Quantitative Detection of Pharmaceuticals Using a Combination of Paper Microfluidics and Wavelength Modulated Raman Spectroscopy

被引:13
|
作者
Craig, Derek [1 ]
Mazilu, Michael [1 ]
Dholakia, Kishan [1 ]
机构
[1] Univ St Andrews, Dept Phys & Astron, St Andrews, Fife, Scotland
来源
PLOS ONE | 2015年 / 10卷 / 05期
基金
英国工程与自然科学研究理事会;
关键词
FLUORESCENCE SUPPRESSION; CELLS; INSTRUMENTATION; DIAGNOSTICS; EXCITATION; SCATTERING; ALGORITHM; PLATFORM; DEVICE; SPACE;
D O I
10.1371/journal.pone.0123334
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Raman spectroscopy has proven to be an indispensable technique for the identification of various types of analytes due to the fingerprint vibration spectrum obtained. Paper microfluidics has also emerged as a low cost, easy to fabricate and portable approach for point of care testing. However, due to inherent background fluorescence, combining Raman spectroscopy with paper microfluidics is to date an unmet challenge in the absence of using surface enhanced mechanisms. We describe the first use of wavelength modulated Raman spectroscopy (WMRS) for analysis on a paper microfluidics platform. This study demonstrates the ability to suppress the background fluorescence of the paper using WMRS and the subsequent implementation of this technique for pharmaceutical analysis. The results of this study demonstrate that it is possible to discriminate between both paracetamol and ibuprofen, whilst, also being able to detect the presence of each analyte quantitatively at nanomolar concentrations.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] In vitro toxicology evaluation of pharmaceuticals using Raman micro-spectroscopy
    Owen, Chris A.
    Selvakumaran, Jamuna
    Notingher, Ioan
    Jell, Gavin
    Hench, Larry L.
    Stevens, Molly M.
    JOURNAL OF CELLULAR BIOCHEMISTRY, 2006, 99 (01) : 178 - 186
  • [32] Feasibility Reaserch on Using Raman Spectroscopy with PLS for the Quantitative Detection of Cholesterol Content in Serum
    Dong Hai-sheng
    Zhang Li-fen
    Zhong Yue
    Huang Jian-ying
    Chen Bin
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2013, 33 (05) : 1253 - 1256
  • [33] Detection of cardiovascular disease associated miR-29a using paper-based microfluidics and surface enhanced Raman scattering
    Mabbott, Samuel
    Fernandes, Syrena C.
    Schechinger, Monika
    Cote, Gerard L.
    Faulds, Karen
    Mace, Charles R.
    Graham, Duncan
    ANALYST, 2020, 145 (03) : 983 - 991
  • [34] Quantitative determination and validation of Carvedilol in pharmaceuticals using quantitative nuclear magnetic resonance spectroscopy
    Gadape, Hemant
    Parikh, Kalpesh
    ANALYTICAL METHODS, 2011, 3 (10) : 2341 - 2347
  • [35] Quantitative detection of adulterated olive oil by Raman spectroscopy and chemometrics
    Zhang, Xiao-Fang
    Zou, Ming-Qiang
    Qi, Xiao-Hua
    Liu, Feng
    Zhang, Cheng
    Yin, Feng
    JOURNAL OF RAMAN SPECTROSCOPY, 2011, 42 (09) : 1784 - 1788
  • [36] Online Raman spectroscopy for quantitative detection and characterization of aerosolized soot
    Bergqvist, Saga
    Bengtsson, Per -Erik
    Le, Kim Ccuong
    OPTICS EXPRESS, 2024, 32 (16): : 28681 - 28694
  • [37] Wavelength modulated surface enhanced (resonance) Raman scattering for background-free detection
    Praveen, Bavishna B.
    Steuwe, Christian
    Mazilu, Michael
    Dholakia, Kishan
    Mahajan, Sumeet
    ANALYST, 2013, 138 (10) : 2816 - 2820
  • [38] Spatially offset Raman spectroscopy (SORS) for the analysis and detection of packaged pharmaceuticals and concealed drugs
    Olds, William J.
    Jaatinen, Esa
    Fredericks, Peter
    Cletus, Biju
    Panayiotou, Helen
    Izake, Emad L.
    FORENSIC SCIENCE INTERNATIONAL, 2011, 212 (1-3) : 69 - 77
  • [39] Rapid Quantitative Analysis of Puerarin Using Raman Spectroscopy
    Qi, Xin
    Zeng, Chang-chun
    Liu, Han-ping
    Liu, Song-hao
    SPECTROSCOPY, 2013, 28 (04) : 34 - 39
  • [40] Quantitative monitoring of yeast fermentation using Raman spectroscopy
    Iversen, Jens A.
    Berg, Rolf W.
    Ahring, Birgitte K.
    ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2014, 406 (20) : 4911 - 4919