Chronic Hypoxia Suppresses Pregnancy-Induced Upregulation of Large-Conductance Ca2+-Activated K+ Channel Activity in Uterine Arteries

被引:53
|
作者
Hu, Xiang-Qun [1 ]
Xiao, Daliao [1 ]
Zhu, Ronghui [1 ]
Huang, Xiaohui [1 ]
Yang, Shumei [2 ]
Wilson, Sean M. [1 ]
Zhang, Lubo [1 ]
机构
[1] Loma Linda Univ, Sch Med, Dept Basic Sci, Ctr Perinatal Biol,Div Pharmacol, Loma Linda, CA 92350 USA
[2] Calif State Univ San Bernardino, Dept Chem & Biochem, San Bernardino, CA 92407 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
hypoxia; uterine artery; pregnancy; BKCa channel; myogenic tone; steroids; PROTEIN-KINASE-C; DEPENDENT MYOGENIC TONE; SMOOTH-MUSCLE-CELLS; BLOOD-FLOW; BETA-1; SUBUNIT; HIGH-ALTITUDE; POTASSIUM CHANNELS; STEROID-HORMONES; GENE-EXPRESSION; PRESSURE;
D O I
10.1161/HYPERTENSIONAHA.112.196097
中图分类号
R6 [外科学];
学科分类号
1002 ; 100210 ;
摘要
Our previous study demonstrated that increased Ca2+-activated K+ (BKCa) channel activity played a key role in the normal adaptation of reduced myogenic tone of uterine arteries in pregnancy. The present study tested the hypothesis that chronic hypoxia during gestation inhibits pregnancy-induced upregulation of BKCa channel function in uterine arteries. Resistance-sized uterine arteries were isolated from nonpregnant and near-term pregnant sheep maintained at sea level (approximate to 300 m) or exposed to high-altitude (3801 m) hypoxia for 110 days. Hypoxia during gestation significantly inhibited pregnancy-induced upregulation of BKCa channel activity and suppressed BKCa channel current density in pregnant uterine arteries. This was mediated by a selective downregulation of BKCa channel beta 1 subunit in the uterine arteries. In accordance, hypoxia abrogated the role of the BKCa channel in regulating pressure-induced myogenic tone of uterine arteries that was significantly elevated in pregnant animals acclimatized to chronic hypoxia. In addition, hypoxia abolished the steroid hormone-mediated increase in the beta 1 subunit and BKCa channel current density observed in nonpregnant uterine arteries. Although the activation of protein kinase C inhibited BKCa channel current density in pregnant uterine arteries of normoxic sheep, this effect was ablated in the hypoxic animals. The results demonstrate that selectively targeting BKCa channel beta 1 subunit plays a critical role in the maladaption of uteroplacental circulation caused by chronic hypoxia, which contributes to the increased incidence of preeclampsia and fetal intrauterine growth restriction associated with gestational hypoxia. (Hypertension. 2012; 60:214-222.)
引用
收藏
页码:214 / 222
页数:9
相关论文
共 50 条
  • [22] Large-conductance Ca2+-activated K+ channels:: Physiological role and pharmacology
    Wu, SN
    CURRENT MEDICINAL CHEMISTRY, 2003, 10 (08) : 649 - 661
  • [23] Selectivity filter gating in large-conductance Ca2+-activated K+ channels
    Thompson, Jill
    Begenisich, Ted
    JOURNAL OF GENERAL PHYSIOLOGY, 2012, 139 (03): : 235 - 244
  • [24] Inhibition of DNA Demethylation Blocks Pregnancy-Mediated Increase in Large Conductance Ca2+-Activated K+ Channel Activity in Ovine Uterine Arteries.
    Hu, Xiang-Qun
    Han, Limin
    Zhang, Lubo
    REPRODUCTIVE SCIENCES, 2017, 24 : 274A - 275A
  • [25] Large-conductance Ca2+-activated K+ channel β1-subunit knockout mice are not hypertensive
    Xu, Hui
    Garver, Hannah
    Galligan, James J.
    Fink, Gregory D.
    AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 2011, 300 (02): : H476 - H485
  • [26] Ca2+-dependent gating mechanisms for dSlo, a large-conductance Ca2+-activated K+ (BK) channel
    Moss, BL
    Silberberg, SD
    Nimigean, CM
    Magleby, KL
    BIOPHYSICAL JOURNAL, 1999, 76 (06) : 3099 - 3117
  • [27] Cloning and expression of the large-conductance Ca2+-activated K+ channel from colonic smooth muscle
    Vogalis, F
    Vincent, T
    Qureshi, I
    Schmalz, F
    Ward, MW
    Sanders, KM
    Horowitz, B
    AMERICAN JOURNAL OF PHYSIOLOGY-GASTROINTESTINAL AND LIVER PHYSIOLOGY, 1996, 271 (04): : G629 - G639
  • [28] 14-3-3γ, a novel regulator of the large-conductance Ca2+-activated K+ channel
    Chen, Shan
    Feng, Xiuyan
    Chen, Xinxin
    Zhuang, Zhizhi
    Xiao, Jia
    Fu, Haian
    Klein, Janet D.
    Wang, Xiaonan H.
    Hoover, Robert S.
    Eaton, Douglas C.
    Cai, Hui
    AMERICAN JOURNAL OF PHYSIOLOGY-RENAL PHYSIOLOGY, 2020, 319 (01) : F52 - F62
  • [29] LARGE-CONDUCTANCE Ca2+-ACTIVATED K+ CHANNEL REGULATES SPONTANEOUS Ca2+ OSCILLATIONS IN RAT PINEALOCYTES
    Muramatsu, Makoto
    Mizutani, Hiroya
    Yamamura, Hisao
    Ohya, Susumu
    Imaizumi, Yuji
    JOURNAL OF PHYSIOLOGICAL SCIENCES, 2009, 59 : 243 - 243
  • [30] Pregnancy Reprograms Large-Conductance Ca2+-Activated K+ Channel in Uterine Arteries Roles of Ten-Eleven Translocation Methylcytosine Dioxygenase 1-Mediated Active Demethylation
    Hu, Xiang-Qun
    Dasgupta, Chiranjib
    Chen, Man
    Xiao, Daliao
    Huang, Xiaohui
    Han, Limin
    Yang, Shumei
    Xu, Zhice
    Zhang, Lubo
    HYPERTENSION, 2017, 69 (06) : 1181 - +