A MACHINE LEARNING APPROACH APPLIED TO GYNECOLOGICAL ULTRASOUND TO PREDICT PROGRESSION-FREE SURVIVAL IN OVARIAN CANCER PATIENTS

被引:0
|
作者
Arezzo, F. [1 ]
Loizzi, V. [1 ]
Santarsiero, C. M. [1 ]
Cazzato, G. [2 ]
Cataldo, V. [1 ]
Mongelli, M. [1 ]
Cicinelli, E. [1 ]
Cormio, G. [1 ]
机构
[1] Univ Bari, Obstet & Gynecol Unit, Bari, Italy
[2] Univ Bari, Pathol Sect, Bari, Italy
关键词
D O I
10.1136/ijgc-2021-ESGO.107
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
954
引用
收藏
页码:A70 / A70
页数:1
相关论文
共 50 条
  • [21] An MRI-based radiomics nomogram to predict progression-free survival in patients with endometrial cancer
    Liu, Ling
    Ji, Xiaodong
    Liang, Caihong
    Zhu, Jinxia
    Huang, Lixiang
    Zhao, Yujiao
    Xu, Xiangfeng
    Song, Zhiyi
    Shen, Wen
    FUTURE ONCOLOGY, 2024,
  • [22] Association of somatic DNA methylation variability with progression-free survival and toxicity in ovarian cancer patients
    Flanagan, J. M.
    Wilhelm-Benartzi, C. S.
    Metcalf, M.
    Kaye, S. B.
    Brown, R.
    ANNALS OF ONCOLOGY, 2013, 24 (11) : 2813 - 2818
  • [23] Prediction of Survival and Progression-free Survival Using Machine Learning in Stage III Lung Cancer: A Pilot Study
    Yakar, Melek
    Etiz, Durmus
    Yilmaz, Senay
    Celik, Ozer
    Guntulu, A. K.
    Metintas, Muzaffer
    TURK ONKOLOJI DERGISI-TURKISH JOURNAL OF ONCOLOGY, 2021, 36 (04): : 446 - 458
  • [24] Progression-Free Survival Versus Overall Survival in Ovarian Cancer: Where Are We Now?
    Susana Banerjee
    Stan Kaye
    Current Oncology Reports, 2012, 14 : 483 - 485
  • [25] APPLICATION OF MACHINE LEARNING (ML) TO PREDICT PROGRESSION-FREE SURVIVAL (PFS) IN ADVANCED RENAL CELL CARCINOMA (RCC).
    Shahin, M.
    Li, J.
    Lin, S.
    Nickens, D.
    Ouellet, D.
    CLINICAL PHARMACOLOGY & THERAPEUTICS, 2021, 109 : S74 - S75
  • [26] Progression-Free Survival Versus Overall Survival in Ovarian Cancer: Where Are We Now?
    Banerjee, Susana
    Kaye, Stan
    CURRENT ONCOLOGY REPORTS, 2012, 14 (06) : 483 - 485
  • [27] Amplification of GNAS may be an independent, qualitative, and reproducible biomarker to predict progression-free survival in epithelial ovarian cancer
    Tominaga, Ei-ichiro
    Tsuda, Hiroshi
    Arao, Tokuzo
    Nishimura, Sadako
    Takano, Masashi
    Kataoka, Fumio
    Nomura, Hiroyuki
    Hirasawa, Akira
    Aoki, Daisuke
    Nishio, Kazuto
    GYNECOLOGIC ONCOLOGY, 2010, 118 (02) : 160 - 166
  • [28] Ultrasound-based radiomics score: a potential biomarker for the prediction of progression-free survival in ovarian epithelial cancer
    Yao, Fei
    Ding, Jie
    Hu, Zhangyong
    Cai, Mengting
    Liu, Jinjin
    Huang, Xiaowan
    Zheng, Ruru
    Lin, Feng
    Lan, Li
    ABDOMINAL RADIOLOGY, 2021, 46 (10) : 4936 - 4945
  • [29] Ultrasound-based radiomics score: a potential biomarker for the prediction of progression-free survival in ovarian epithelial cancer
    Fei Yao
    Jie Ding
    Zhangyong Hu
    Mengting Cai
    Jinjin Liu
    Xiaowan Huang
    Ruru Zheng
    Feng Lin
    Li Lan
    Abdominal Radiology, 2021, 46 : 4936 - 4945
  • [30] A nomogram to predict the progression-free survival of clival chordoma
    Zhai, Yixuan
    Bai, Jiwei
    Li, Mingxuan
    Wang, Shuai
    Li, Chuzhong
    Wei, Xinting
    Zhang, Yazhuo
    JOURNAL OF NEUROSURGERY, 2021, 134 (01) : 144 - 152