Arabic speech recognition by end-to-end, modular systems and human

被引:16
|
作者
Hussein, Amir [1 ,2 ]
Watanabe, Shinji [3 ]
Ali, Ahmed [1 ]
机构
[1] HBKU, Qatar Comp Res Inst, Doha, Qatar
[2] Kanari AI, Pasadena, CA USA
[3] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA
来源
关键词
Dialectal arabic; End-to-end speech recognition; Human speech recognition; Modern standard arabic; Transformer;
D O I
10.1016/j.csl.2021.101272
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recent advances in automatic speech recognition (ASR) have achieved accuracy levels comparable to human transcribers, which led researchers to debate if the machine has reached human performance. Previous work focused on the English language and modular hidden Markov model-deep neural network (HMM-DNN) systems. In this paper, we perform a comprehensive benchmarking for end-to-end transformer ASR, modular HMM-DNN ASR, and human speech recognition (HSR) on the Arabic language and its dialects. For the HSR, we evaluate linguist performance and lay-native speaker performance on a new dataset collected as a part of this study. For ASR the end-to-end work led to 12.5%, 27.5%, 33.8% WER; a new performance milestone for the MGB2, MGB3, and MGB5 challenges respectively. Our results suggest that human performance in the Arabic language is still considerably better than the machine with an absolute WER gap of 3.5% on average.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] End-to-End Speech Recognition of Tamil Language
    Changrampadi, Mohamed Hashim
    Shahina, A.
    Narayanan, M. Badri
    Khan, A. Nayeemulla
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2022, 32 (02): : 1309 - 1323
  • [22] PARAMETER UNCERTAINTY FOR END-TO-END SPEECH RECOGNITION
    Braun, Stefan
    Liu, Shih-Chii
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 5636 - 5640
  • [23] END-TO-END VISUAL SPEECH RECOGNITION WITH LSTMS
    Petridis, Stavros
    Li, Zuwei
    Pantic, Maja
    2017 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2017, : 2592 - 2596
  • [24] An End-to-End model for Vietnamese speech recognition
    Van Huy Nguyen
    2019 IEEE - RIVF INTERNATIONAL CONFERENCE ON COMPUTING AND COMMUNICATION TECHNOLOGIES (RIVF), 2019, : 307 - 312
  • [25] End-to-End Myanmar Speech Recognition with Human-Machine Cooperation
    Wang, Faliang
    Yang, Yiling
    Yang, Jian
    2022 INTERNATIONAL CONFERENCE ON ASIAN LANGUAGE PROCESSING (IALP 2022), 2022, : 156 - 161
  • [26] Review of End-to-End Streaming Speech Recognition
    Wang, Aohui
    Zhang, Long
    Song, Wenyu
    Meng, Jie
    Computer Engineering and Applications, 2024, 59 (02) : 22 - 33
  • [27] End-to-End Speech Recognition and Disfluency Removal
    Lou, Paria Jamshid
    Johnson, Mark
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, EMNLP 2020, 2020, : 2051 - 2061
  • [28] Performance Monitoring for End-to-End Speech Recognition
    Li, Ruizhi
    Sell, Gregory
    Hermansky, Hynek
    INTERSPEECH 2019, 2019, : 2245 - 2249
  • [29] TOWARDS END-TO-END UNSUPERVISED SPEECH RECOGNITION
    Liu, Alexander H.
    Hsu, Wei-Ning
    Auli, Michael
    Baevski, Alexei
    2022 IEEE SPOKEN LANGUAGE TECHNOLOGY WORKSHOP, SLT, 2022, : 221 - 228
  • [30] TRIGGERED ATTENTION FOR END-TO-END SPEECH RECOGNITION
    Moritz, Niko
    Hori, Takaaki
    Le Roux, Jonathan
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 5666 - 5670