Velocity probability density functions in Lagrangian dispersion models for inhomogeneous turbulence

被引:16
|
作者
Maurizi, A
Tampieri, F
机构
[1] CNR, FISBAT, I-40129 Bologna, Italy
[2] CNR, ISIAtA, I-73100 Lecce, Italy
[3] CNR, IMGA, I-40129 Bologna, Italy
关键词
air quality modelling; atmospheric dispersion; particle models; inhomogeneous turbulence; non-Gaussian distribution;
D O I
10.1016/S1352-2310(98)00160-5
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The correct representation of the probability density function of Eulerian turbulent velocity is a key problem in modelling pollutant dispersion using Lagrangian stochastic models. Analysis of measurements in various kinds of turbulent flows shows that the value of the fourth moment mu(4) of the distribution spans a wide range of values that are considerably larger than the Gaussian value even if the skewness is negligible. A review of different approaches used in building non-Gaussian pdfs clearly reveals that in most cases, the fourth moment is either not considered (i.e. a relationship between mu(3) and mu(4) is chosen in order to close the problem) or covers a small range of values. A new approach using a bi-Gaussian distribution is developed that is able to handle every value for mu(4) while satisfying the necessary continuity requirements in accord with Thomson's (1997) model, excluding the half line mu(3) = 0, mu(4) greater than or equal to 6 mu(2)(2). Results of a simulation for a test case in non-Gaussian inhomogeneous turbulence satisfactorily reproduces the well-mixed condition. (C) 1998 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:281 / 289
页数:9
相关论文
共 50 条
  • [31] Multifractal asymptotic modeling of the probability density function of velocity increments in turbulence
    Tchéou, JM
    Brachet, ME
    Belin, F
    Tabeling, P
    Willaime, H
    PHYSICA D-NONLINEAR PHENOMENA, 1999, 129 (1-2) : 93 - 114
  • [32] Structure function exponents and probability density function of the velocity difference in turbulence
    Verzicco, R
    Camussi, R
    PHYSICS OF FLUIDS, 2002, 14 (02) : 906 - 909
  • [33] Multifractal asymptotic modeling of the probability density function of velocity increments in turbulence
    Tcheou, J.M.
    Brachet, M.E.
    Belin, F.
    Tabeling, P.
    Willaime, H.
    Physica D: Nonlinear Phenomena, 1999, 129 (01): : 93 - 114
  • [34] LAGRANGIAN VELOCITY COVARIANCE IN HELICAL TURBULENCE
    KRAICHNAN, RH
    JOURNAL OF FLUID MECHANICS, 1977, 81 (JUN24) : 385 - 398
  • [35] LAGRANGIAN VELOCITY AUTOCORRELATION IN ISOTROPIC TURBULENCE
    KANEDA, Y
    GOTOH, T
    PHYSICS OF FLUIDS A-FLUID DYNAMICS, 1991, 3 (08): : 1924 - 1933
  • [36] DENSITY PROPERTIES FOR LAGRANGIAN PROBABILITY
    MAILLIAT, A
    DUHAMEL, P
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II, 1981, 292 (16): : 1107 - 1110
  • [37] Modeling probability density functions of velocity fluctuations in wind farms
    Kreienkamp, Kim L.
    Wilczek, Michael
    WIND ENERGY, 2022, 25 (06) : 985 - 997
  • [38] Probability Density Functions of Velocity Increments in the Atmospheric Boundary Layer
    Liu, Lei
    Hu, Fei
    Cheng, Xue-Ling
    Song, Li-Li
    BOUNDARY-LAYER METEOROLOGY, 2010, 134 (02) : 243 - 255
  • [39] Probability Density Functions of Velocity Increments in the Atmospheric Boundary Layer
    Lei Liu
    Fei Hu
    Xue-Ling Cheng
    Li-Li Song
    Boundary-Layer Meteorology, 2010, 134 : 243 - 255
  • [40] METHOD FOR CALCULATING PROBABILITY DENSITY FUNCTIONS OF TURBULENT VELOCITY FLUCTUATIONS
    WANG, JCT
    SHEN, SF
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1975, 20 (11): : 1417 - 1417