The Weyl bundle as a differentiable manifold

被引:1
|
作者
Tosiek, J [1 ]
机构
[1] Tech Univ Lodz, Inst Phys, PL-93005 Lodz, Poland
来源
关键词
D O I
10.1088/0305-4470/38/23/008
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The construction of an infinite-dimensional differentiable manifold R-infinity not modelled on any Banach space is proposed. Definition, metric and differential structures of a Weyl algebra (P*M-p[[h]], o) and a Weyl algebra bundle (P*M[[h]], o) are presented. Continuity of the o-product in the Tichonov topology is proved. Construction of the *-product of the Fedosov type in terms of theory of connection in a fibre bundle is explained.
引用
收藏
页码:5193 / 5216
页数:24
相关论文
共 50 条
  • [41] Analytic bundle structure on the idempotent manifold
    Chi-Wai Leung
    Chi-Keung Ng
    Monatshefte für Mathematik, 2021, 196 : 103 - 133
  • [42] Analytic bundle structure on the idempotent manifold
    Leung, Chi-Wai
    Ng, Chi-Keung
    MONATSHEFTE FUR MATHEMATIK, 2021, 196 (01): : 103 - 133
  • [43] On the Tangent Bundle of a Hypersurface in a Riemannian Manifold
    Hou, Zhonghua
    Sun, Lei
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2015, 36 (04) : 579 - 602
  • [44] THE AUTOPARALLEL PLANE AXIOM ON A DIFFERENTIABLE MANIFOLD WITH A LINEAR CONNECTION
    GANCHEV, GT
    IVANOV, SP
    DOKLADI NA BOLGARSKATA AKADEMIYA NA NAUKITE, 1987, 40 (04): : 31 - 34
  • [45] TANGENT BUNDLE OF AN H-MANIFOLD
    KAMINKER, J
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 41 (01) : 305 - 308
  • [46] A Cyclic Differentiable Manifold Representation of Redundant Manipulator Kinematics
    Haug, Edward J.
    JOURNAL OF MECHANISMS AND ROBOTICS-TRANSACTIONS OF THE ASME, 2024, 16 (06):
  • [47] On the tangent bundle of a hypersurface in a Riemannian manifold
    Zhonghua Hou
    Lei Sun
    Chinese Annals of Mathematics, Series B, 2015, 36 : 579 - 602
  • [48] The tangent bundle of an almost complex manifold
    Lempert, L
    Szóke, R
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2001, 44 (01): : 70 - 79
  • [49] Laplacians on the tangent bundle of Finsler manifold
    Zhong, Chunping
    BALKAN JOURNAL OF GEOMETRY AND ITS APPLICATIONS, 2011, 16 (01): : 170 - 181
  • [50] A CONSTRUCTIVE APPROACH TO BUNDLES OF GEOMETRIC OBJECTS ON A DIFFERENTIABLE MANIFOLD
    FERRARIS, M
    FRANCAVIGLIA, M
    REINA, C
    JOURNAL OF MATHEMATICAL PHYSICS, 1983, 24 (01) : 120 - 124