The Weyl bundle as a differentiable manifold

被引:1
|
作者
Tosiek, J [1 ]
机构
[1] Tech Univ Lodz, Inst Phys, PL-93005 Lodz, Poland
来源
关键词
D O I
10.1088/0305-4470/38/23/008
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The construction of an infinite-dimensional differentiable manifold R-infinity not modelled on any Banach space is proposed. Definition, metric and differential structures of a Weyl algebra (P*M-p[[h]], o) and a Weyl algebra bundle (P*M[[h]], o) are presented. Continuity of the o-product in the Tichonov topology is proved. Construction of the *-product of the Fedosov type in terms of theory of connection in a fibre bundle is explained.
引用
收藏
页码:5193 / 5216
页数:24
相关论文
共 50 条
  • [1] On the cotangent bundle of a differentiable manifold
    Oproiu, V
    Papaghiuc, N
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 1997, 50 (3-4): : 317 - 338
  • [2] Structures in a differentiable manifold and their applications to the tangent bundle
    Khan, Mohammad Nazrul Islam
    Ansari, Gufran Ahmad
    Adhoni, Zameer Ahmad
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2020, (44): : 124 - 133
  • [3] Structures in a differentiable manifold and their applications to the tangent bundle
    Khan, Mohammad Nazrul Islam
    Ansari, Gufran Ahmad
    Adhoni, Zameer Ahmad
    Italian Journal of Pure and Applied Mathematics, 2020, 44 : 124 - 133
  • [4] SASAKI METRIC ON THE TANGENT BUNDLE OF A WEYL MANIFOLD
    Bejan, Cornelia-Livia
    Gul, Ilhan
    PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2018, 103 (117): : 25 - 32
  • [5] HORIZONTAL LIFT METRIC ON THE TANGENT BUNDLE OF A WEYL MANIFOLD
    Altunbas, Murat
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2021, 36 (04): : 895 - 901
  • [6] Novel theorems for the cotangent bundle endowed with metallic structures on a differentiable manifold
    Khan, Mohammad Nazrul Islam
    Fatima, Nahid
    HELIYON, 2024, 10 (11)
  • [7] TENSOR FIELDS AND CONNECTIONS ON CROSS-SECTIONS IN TANGENT BUNDLE OF A DIFFERENTIABLE MANIFOLD
    YANO, K
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURG SECTION A-MATHEMATICAL AND PHYSICAL SCIENCES, 1966, 67 : 277 - &
  • [8] THE WEYL BUNDLE
    PLYMEN, RJ
    JOURNAL OF FUNCTIONAL ANALYSIS, 1982, 49 (02) : 186 - 197
  • [9] WEYL MANIFOLD: A QUANTIZED SYMPLECTIC MANIFOLD
    Yoshioka, Akira
    Kanazawa, Tomoyo
    PROCEEDINGS OF THE SEVENTEENTH INTERNATIONAL CONFERENCE ON GEOMETRY, INTEGRABILITY AND QUANTIZATION, 2016, : 392 - 401
  • [10] DIFFERENTIABLE MANIFOLDS - WEYL AND WHITNEY
    SHIELDS, A
    MATHEMATICAL INTELLIGENCER, 1988, 10 (02): : 5 - 8