Sawdust-based superhydrophobic pellets for efficient oil-water separation

被引:79
|
作者
Latthe, Sanjay S. [1 ,2 ]
Kodag, Vishnu S. [2 ]
Sutar, Rajaram S. [2 ]
Bhosale, Appasaheb K. [2 ]
Nagappan, Saravanan [3 ]
Ha, Chang-Sik [3 ]
Sadasivuni, Kishor Kumar [4 ]
Kulal, Shivaji R. [2 ]
Liu, Shanhu [1 ]
Xing, Ruimin [1 ]
机构
[1] Henan Univ, Coll Chem & Chem Engn, Henan Key Lab Polyoxometalate Chem, Henan Joint Int Res Lab Environm Pollut Control M, Kaifeng 475004, Peoples R China
[2] Affiliated Shivaji Univ, Raje Ramrao Coll, Dept Phys, Self Cleaning Res Lab, Kolhapur 416404, Maharashtra, India
[3] Pusan Natl Univ, Dept Polymer Sci & Engn, Busan 46241, South Korea
[4] Qatar Univ, Ctr Adv Mat, POB 2713, Doha, Qatar
基金
中国国家自然科学基金;
关键词
Sawdust; Superhydrophobic; Oil-water separation; Lotus effect; Rough microstructure; OIL/WATER SEPARATION; SURFACE; ROBUST; SELF; LOTUS; FABRICATION; EXPOSURE; SPILLS; SOOT;
D O I
10.1016/j.matchemphys.2020.122634
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Severe water pollution by means of oil is the major issue worldwide. Emerging materials like superhydrophobic surfaces have shown immense potential to control this issue. Herein we utilized low-cost Sawdust-Polystyrene (SD - PS) composite and developed a facile strategy to prepare a free-standing superhydrophobic pellet for efficient oil-water separation. More importantly, the simple recovery of the absorbed oil is feasible. To achieve crack-free, regular and robust superhydrophobic SD - PS pellet, the concentration of polystyrene, the quantity of sawdust in polymer solution and thickness of the pellet was optimised. The surface morphology analysis confirmed an adequate binding between sawdust and polystyrene in composite structure with formation of micro-voids less than 100 mu m that facilitated efficient oil-water separation. The superhydrophobic pellet exhibited oil-water separation efficiency higher than 90% for the oils and organic liquids like hexane, kerosene, diesel and coconut oil with excellent separation cycles around 30. The mechanically durable superhydrophobic SD - PS pellet could separate oil from muddy as well as warm water, which are more suitable for industrial applications.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Fabrication of bioinspired structured superhydrophobic and superoleophilic copper mesh for efficient oil-water separation
    Yan Song
    Yan Liu
    Bin Zhan
    Cigdem Kaya
    Thomas Stegmaier
    Zhiwu Han
    Luquan Ren
    Journal of Bionic Engineering, 2017, 14 : 497 - 505
  • [32] Electrospinning to fabricate composite membranes with improved superhydrophobic properties for efficient oil-water separation
    Wang, Xiaohui
    Li, Xinmei
    MATERIALS TODAY COMMUNICATIONS, 2024, 38
  • [33] Superhydrophobic and superlipophilic LDH flower balls/cellulose membranes for efficient oil-water separation
    Wu, Xinglei
    Feng, Shuangjiang
    Mao, Chunfeng
    Liu, Chenghuan
    Zhang, Yiwei
    Zhou, Yuming
    Sheng, Xiaoli
    NEW JOURNAL OF CHEMISTRY, 2023, 47 (15) : 7093 - 7100
  • [34] A comprehensive review of methodology and advancement in the development of superhydrophobic membranes for efficient oil-water separation
    Kumar, Avinash
    Mishra, Vishal
    Rajbahadur, Yadav Narendra Kumar
    Negi, Sushant
    Kar, Simanchal
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2024, 46 (07)
  • [35] Facile preparation of superhydrophobic/superoleophilic diatomite porous ceramics for efficient oil-water separation
    Li, Xiaojian
    Wu, Wenhao
    Han, Lei
    Li, Zhi
    Wang, Honghong
    Dong, Longhao
    Jia, Quanli
    Huang, Zhong
    Zhang, Haijun
    Zhang, Shaowei
    JOURNAL OF THE CERAMIC SOCIETY OF JAPAN, 2022, 130 (11) : 867 - 874
  • [36] Fabrication of Bioinspired Structured Superhydrophobic and Superoleophilic Copper Mesh for Efficient Oil-water Separation
    Song, Yan
    Liu, Yan
    Zhan, Bin
    Kaya, Cigdem
    Stegmaier, Thomas
    Han, Zhiwu
    Ren, Luquan
    JOURNAL OF BIONIC ENGINEERING, 2017, 14 (03) : 497 - 505
  • [37] Superhydrophobic wood sponge with intelligent pH responsiveness for efficient and continuous oil-water separation
    Du, Bin
    Li, Bin
    Yang, Kenan
    Chao, Yi
    Luo, Rubai
    Zhou, Shisheng
    Li, Huailin
    MATERIALS RESEARCH EXPRESS, 2023, 10 (05)
  • [38] Eco-friendly superhydrophobic sponges for efficient oil-water separation and resource recycling
    Han, Zhishuang
    Lv, Xinmeng
    Li, Yingge
    Gao, Meihuan
    Tang, Zhenlin
    Su, Xinying
    Zhang, Ziyang
    Li, Haidi
    He, Jing
    Zheng, Zaihang
    Liu, Yan
    JOURNAL OF MOLECULAR LIQUIDS, 2024, 409
  • [39] Superhydrophobic silk fibroin-silica melamine sponge for efficient oil-water separation
    Cheng, Zuqin
    Zheng, Ke
    Zhou, Shaoqi
    JOURNAL OF POROUS MATERIALS, 2022, 29 (01) : 279 - 289
  • [40] Bioinspired structured superhydrophobic and superoleophilic stainless steel mesh for efficient oil-water separation
    Liu, Yan
    Zhang, Kaiteng
    Yao, Wenguang
    Liu, Jiaan
    Han, Zhiwu
    Ren, Luquan
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2016, 500 : 54 - 63