Molecular dynamics investigation on shear viscosity of the mixed working fluid for supercritical CO2 Brayton cycle

被引:11
|
作者
Xue, Juan [1 ]
Nie, Xianhua [1 ]
Zhao, Li [1 ]
Zhao, Ruikai [1 ]
Wang, Jiajun [1 ]
Yang, Chengdian [2 ]
Lin, Anfei [2 ]
机构
[1] Tianjin Univ, Minist Educ China, Key Lab Efficient Utilizat Low & Medium, Tianjin 300350, Peoples R China
[2] INC, Dandong Power Plant Huaneng Power Int, Beijing, Peoples R China
来源
关键词
Viscosity; Supercritical Brayton CO 2 cycle; Molecular simulation; Mixtures; Impurity gas; CO2-BASED BINARY-MIXTURE; CARBON-DIOXIDE; BRAYTON CYCLE; THERMOPHYSICAL PROPERTIES; CO2; SIMULATION; PERFORMANCE; COEFFICIENT; DESIGN;
D O I
10.1016/j.supflu.2022.105533
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Effects of the impurity gas on CO2 shear viscosity has not been fully understood yet. In this work, the shear viscosity of CO2 + N2 + O2 and pure CO2 were calculated via molecular dynamics simulation and theoretical models. Compared with the NIST database, the relative deviation of the pure CO2 shear viscosity was below 1%. Then, effects of the impurity gas, namely N2 and O2, on the shear viscosity were discussed. The shear viscosity increased when CO2 was mixed with N2 and O2. The results demonstrated that the maximum relative change of the shear viscosity can reach 5.72% when the mole fraction of N2 and O2 in the system was 20% at 15 MPa and 827 K. Predicted shear viscosity in this work would guide the design and optimization of supercritical CO2 Brayton cycles.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] DESIGN OF AN EXPERIMENTAL TEST FACILITY FOR SUPERCRITICAL CO2 BRAYTON CYCLE
    Garg, Pardeep
    Kumar, Pramod
    Dutta, Pradip
    Conboy, Thomas
    Ho, Clifford
    PROCEEDINGS OF THE ASME 8TH INTERNATIONAL CONFERENCE ON ENERGY SUSTAINABILITY, 2014, VOL 1, 2014,
  • [22] PRELIMINARY EXPERIMENTAL STUDY OF PRECOOLER IN SUPERCRITICAL CO2 BRAYTON CYCLE
    Baik, Seungjoon
    Kim, Seong Gu
    Bae, Seong Jun
    Ahn, Yoonhan
    Lee, Jekyoung
    Lee, Jeong Ik
    PROCEEDINGS OF THE ASME TURBO EXPO: TURBINE TECHNICAL CONFERENCE AND EXPOSITION, 2015, VOL 9, 2015,
  • [23] CONTROL OF A SUPERCRITICAL CO2 RECOMPRESSION BRAYTON CYCLE DEMONSTRATION LOOP
    Conboy, T.
    Pasch, J.
    Fleming, D.
    PROCEEDINGS OF THE ASME TURBO EXPO: TURBINE TECHNICAL CONFERENCE AND EXPOSITION, 2013, VOL 8, 2013,
  • [24] Supercritical CO2 Brayton cycle: A state-of-the-art review
    Liu, Yaping
    Wang, Ying
    Huang, Diangui
    ENERGY, 2019, 189
  • [25] Control of a Supercritical CO2 Recompression Brayton Cycle Demonstration Loop
    Conboy, T.
    Pasch, J.
    Fleming, D.
    JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME, 2013, 135 (11):
  • [26] Investigation on the performance of the supercritical Brayton cycle with CO2-based binary mixture as working fluid for an energy transportation system of a nuclear reactor
    Hu, Lian
    Chen, Deqi
    Huang, Yanping
    Li, Le
    Cao, Yiding
    Yuan, Dewen
    Wang, Junfeng
    Pan, Liangming
    ENERGY, 2015, 89 : 874 - 886
  • [27] Exergetic analysis of a supercritical Brayton cycle with carbon dioxide as working fluid
    Herrera Palomino, Moises
    Castro Pacheco, Edgardo
    Duarte Forero, Jorge
    Fontalvo Lascano, Armando
    Vasquez Padilla, Ricardo
    INGE CUC, 2018, 14 (01) : 159 - 170
  • [28] Thermoeconomic investigation of pressurized oxy-fuel combustion integrated with supercritical CO2 Brayton cycle
    Zhou, Nan
    Du, Jun
    Wu, Mudi
    Xiang, Wenguo
    Chen, Shiyi
    ENERGY CONVERSION AND MANAGEMENT, 2023, 276
  • [29] Performance Analysis of Heat Exchangers and Integrated Supercritical CO2 Brayton Cycle for Varying Heat Carrier, Cooling and Working Fluid Flow Rates
    Chai, Lei
    Tassou, Savvas A.
    HEAT TRANSFER ENGINEERING, 2023, 44 (16-18) : 1498 - 1518
  • [30] Thermodynamic Comparison and Optimization of Supercritical CO2 Brayton Cycles with a Bottoming Transcritical CO2 Cycle
    Wang, Xurong
    Wang, Jiangfeng
    Zhao, Pan
    Dai, Yiping
    JOURNAL OF ENERGY ENGINEERING, 2016, 142 (03)