Effect of Azolla Imbricata and Spirodela Polyrrhiza on Chromium(VI) Removal and Power Generation in a Plant Microbial Fuel Cell

被引:1
|
作者
Ye, Hong [1 ]
Yang, Guangming [2 ]
机构
[1] Chongqing Radio & TV Univ, Planning & Finance Dept, Chongqing 400052, Peoples R China
[2] Chongqing Univ Technol, Sch Management, Chongqing 400054, Peoples R China
来源
关键词
Hexavalent chromium; Plant microbial fuel cell; Electrochemistry; Synergistic effect; HEXAVALENT CHROMIUM; ELECTRICITY PRODUCTION; TRIVALENT CHROMIUM; WASTE-WATER; REDUCTION; PERFORMANCE; CR(VI); REMEDIATION; TOXICITY; SOILS;
D O I
10.20964/2021.10.20
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
In this study, we performed a remediation of hexavalent chromium-contaminated soil within a constructed plant microbial fuel cell and vary the voltage to study its power generation stability. The maximum power density was driven to investigate the performance of systematic electricity generation. Furthermore, the concentration changes in total chromium and hexavalent chromium in the reactor effluent were used to study the effect of Azolla imbricata on the hexavalent chromium removal rate. The results showed that the plant group was 40-80 mV higher when compared with the non-plant group. The maximum power density of the Azolla imbricata group was 2.14 times higher than that of the non-plant group, indicating that the electricity generation performance of the plant group was markedly improved. Compared to the non-plant group, the total chromium and hexavalent chromium residue are only 10.1% and 8.1%, respectively, in the Azolla imbricata group. The synergistic effect of plants and the microbial cell noticeably quickens the hexavalent chromium removal. This work provided a novel strategy for the treatment of hexavalent chromium-contaminated soil.
引用
收藏
页码:1 / 11
页数:11
相关论文
共 50 条
  • [31] Effect of Temperature on Nitrogen Removal and Electricity Generation of a Dual-Chamber Microbial Fuel Cell
    Sha Wang
    Jianqiang Zhao
    Shuang Liu
    Rixiang Zhao
    Bo Hu
    Water, Air, & Soil Pollution, 2018, 229
  • [32] Removal of Hg2+ as an electron acceptor coupled with power generation using a microbial fuel cell
    Wang, Zejie
    Lim, Bongsu
    Choi, Chansoo
    BIORESOURCE TECHNOLOGY, 2011, 102 (10) : 6304 - 6307
  • [33] Co-substrate-fed microbial fuel cell for enhanced power generation and removal of groundwater contaminants
    Kim, Hyeong Jae
    Kim, Jun Hyun
    Jeon, Yongwon
    Kim, Sunghyun
    BULLETIN OF THE KOREAN CHEMICAL SOCIETY, 2022, 43 (08) : 1052 - 1056
  • [34] Nitrate as an Oxidant in the Cathode Chamber of a Microbial Fuel Cell for Both Power Generation and Nutrient Removal Purposes
    Fang, Cheng
    Min, Booki
    Angelidaki, Irini
    APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, 2011, 164 (04) : 464 - 474
  • [35] Nitrate as an Oxidant in the Cathode Chamber of a Microbial Fuel Cell for Both Power Generation and Nutrient Removal Purposes
    Cheng Fang
    Booki Min
    Irini Angelidaki
    Applied Biochemistry and Biotechnology, 2011, 164 : 464 - 474
  • [36] Generation of Power by Microbial Fuel Cell with Ferricyanide in Biodegradation of Benzene
    Wu, Chih-Hung
    Lai, Chi-Yung
    Lin, Chi-Wen
    Kao, Min-Hsiu
    CLEAN-SOIL AIR WATER, 2013, 41 (04) : 390 - 395
  • [37] Design of microbial fuel cell for power generation using milk and
    Jain, Suyog N.
    Kulkarni, Saurabh
    Fulzele, Rohit
    Thandlam, Anil Kumar
    Rajesh, Yennam
    Shivde, Priyanka
    Rikame, Satish
    INDIAN JOURNAL OF CHEMICAL TECHNOLOGY, 2025, 32 (01) : 118 - 124
  • [38] Power generation from furfural using the microbial fuel cell
    Luo, Yong
    Liu, Guangli
    Zhang, Renduo
    Zhang, Cuiping
    JOURNAL OF POWER SOURCES, 2010, 195 (01) : 190 - 194
  • [39] Microbial fuel cell for effluent treatment and sustainable power generation
    Palanisamy, Divyalakshmi
    Chockalingam, Lajapathi Rai
    Murugan, Devaraj
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2024, 46 (01) : 11952 - 11964
  • [40] Triclosan Removal in Microbial Fuel Cell: The Contribution of Adsorption and Bioelectricity Generation
    Xu, Wenli
    Jin, Biao
    Zhou, Shaofeng
    Su, Yanyan
    Zhang, Yifeng
    ENERGIES, 2020, 13 (03)