Parameterized algorithms for the Happy Set problem

被引:2
|
作者
Asahiro, Yuichi [1 ]
Eto, Hiroshi [2 ]
Hanaka, Tesshu [3 ]
Lin, Guohui [4 ]
Miyano, Eiji [5 ]
Terabaru, Ippei [5 ]
机构
[1] Kyushu Sangyo Univ, Fukuoka, Japan
[2] Kyushu Univ, Fukuoka, Japan
[3] Nagoya Univ, Nagoya, Aichi, Japan
[4] Univ Alberta, Edmonton, AB, Canada
[5] Kyushu Inst Technol, Iizuka, Fukuoka, Japan
基金
加拿大自然科学与工程研究理事会; 日本科学技术振兴机构;
关键词
Maximum happy set problem; Parameterized complexity; Fixed-parameter tractability; Graph parameters; MODULAR DECOMPOSITION; CLIQUE-WIDTH; COMPLEXITY; TREEWIDTH; BOUNDS;
D O I
10.1016/j.dam.2021.07.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the parameterized complexity for the Maximum HAPPY SET problem (MaxHS): For an undirected graph G = (V, E) and a subset S subset of V of vertices, a vertex upsilon is happy if upsilon and all its neighbors are in S; otherwise unhappy. Given an undirected graph G = (V, E) and an integer k, the goal of MaxHS is to find a subset S subset of V of k vertices such that the number of happy vertices is maximized. In this paper we first show that MaxHS is W[1]-hard with respect to k even if the input graph is a split graph. Then, we prove the fixed-parameter tractability of MaxHS when parameterized by tree-width, by clique-width plus k, by neighborhood diversity, or by cluster deletion number. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页码:32 / 44
页数:13
相关论文
共 50 条
  • [31] Deterministic Parameterized Algorithms for the Graph Motif Problem
    Pinter, Ron Y.
    Shachnai, Hadas
    Zehavi, Meirav
    MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE, PT II, 2014, 8635 : 589 - 600
  • [32] Deterministic parameterized algorithms for the Graph Motif problem
    Pinter, Ron Y.
    Shachnai, Hadas
    Zehavi, Meirav
    DISCRETE APPLIED MATHEMATICS, 2016, 213 : 162 - 178
  • [33] Parameterized Algorithms for Eccentricity Shortest Path Problem
    Bhyravarapu, Sriram
    Jana, Satyabrata
    Kanesh, Lawqueen
    Saurabh, Saket
    Verma, Shaily
    COMBINATORIAL ALGORITHMS, IWOCA 2023, 2023, 13889 : 74 - 86
  • [34] Exact and Parameterized Algorithms for the Independent Cutset Problem
    Rauch, Johannes
    Rautenbach, Dieter
    Souza, Ueverton S.
    FUNDAMENTALS OF COMPUTATION THEORY, FCT 2023, 2023, 14292 : 378 - 391
  • [35] Parameterized algorithms for the Steiner arborescence problem on a hypercube
    Mahapatra, Sugyani
    Narayanan, Manikandan
    Narayanaswamy, N. S.
    ACTA INFORMATICA, 2025, 62 (01)
  • [36] Graph Classes and Approximability of the Happy Set Problem
    Asahiro, Yuichi
    Eto, Hiroshi
    Hanaka, Tesshu
    Lin, Guohui
    Miyano, Eiji
    Terabaru, Ippei
    COMPUTING AND COMBINATORICS (COCOON 2020), 2020, 12273 : 335 - 346
  • [37] Parameterized complexity of fair feedback vertex set problem
    Kanesh, Lawqueen
    Maity, Soumen
    Muluk, Komal
    Saurabh, Saket
    THEORETICAL COMPUTER SCIENCE, 2021, 867 : 1 - 12
  • [38] Parameterized Intractability of Even Set and Shortest Vector Problem
    Bhattacharyya, Arnab
    Bonnet, Edouard
    Egri, Laszlo
    Ghoshal, Suprovat
    Karthik, C. S.
    Lin, Bingkai
    Manurangsi, Pasin
    Marx, Daniel
    JOURNAL OF THE ACM, 2021, 68 (03)
  • [39] An improved algorithm for parameterized edge dominating set problem
    Iwaide, Ken
    Nagamochi, Hiroshi
    Journal of Graph Algorithms and Applications, 2016, 20 (01): : 23 - 58
  • [40] Fixed parameterized algorithms for generalized feedback vertex set problems
    Sheng, Bin
    Gutin, Gregory
    THEORETICAL COMPUTER SCIENCE, 2023, 953