Evolving deep learning architectures for network intrusion detection using a double PSO metaheuristic

被引:156
|
作者
Elmasry, Wisam [1 ]
Akbulut, Akhan [2 ]
Zaim, Abdul Halim [1 ]
机构
[1] Istanbul Commerce Univ, Dept Comp Engn, TR-34840 Istanbul, Turkey
[2] Istanbul Kultur Univ, Dept Comp Engn, TR-34158 Istanbul, Turkey
关键词
Cyber security; Deep learning; Feature selection; Hyperparameter selection; Network intrusion detection; Particle swarm optimization; PARTICLE SWARM OPTIMIZATION; FEATURE-SELECTION; GENETIC ALGORITHMS; NEURAL-NETWORKS; CLASSIFIERS;
D O I
10.1016/j.comnet.2019.107042
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The prevention of intrusion is deemed to be a cornerstone of network security. Although excessive work has been introduced on network intrusion detection in the last decade, finding an Intrusion Detection Systems (IDS) with potent intrusion detection mechanism is still highly desirable. One of the leading causes of the high number of false alarms and a low detection rate is the existence of redundant and irrelevant features of the datasets, which are used to train the 1DSs. To cope with this problem, we proposed a double Particle Swarm Optimization (PSO)-based algorithm to select both feature subset and hyperparameters in one process. The aforementioned algorithm is exploited in the pre-training phase for selecting the optimized features and model's hyperparameters automatically. In order to investigate the performance differences, we utilized three deep learning models, namely, Deep Neural Networks (DNN), Long Short-Term Memory Recurrent Neural Networks (LSTM-RNN), and Deep Belief Networks (DBN). Furthermore, we used two common IDS datasets in our experiments to validate our approach and show the effectiveness of the developed models. Moreover, many evaluation metrics are used for both binary and multiclass classifications to assess the model's performance in each of the datasets. Finally, intensive quantitative, Friedman test, and ranking methods analyses of our results are provided at the end of this paper. Experimental results show a significant improvement in network intrusion detection when using our approach by increasing Detection Rate (DR) by 4% to 6% and reducing False Alarm Rate (FAR) by 1% to 5% from the corresponding values of same models without pre-training on the same dataset. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] Network Intrusion Detection in Software-Defined Network using Deep and Machine Learning
    Mhamdi, Lotfi
    Hamdi, Hedi
    Mahmood, Mahmood A.
    IEEE CONFERENCE ON GLOBAL COMMUNICATIONS, GLOBECOM, 2023, : 2692 - 2697
  • [22] Evolving Deep Convolutional Neural Network for Intrusion Detection Based on NEAT
    Su, Bingying
    Li, Rongpeng
    Zhang, Honggang
    2020 23RD INTERNATIONAL SYMPOSIUM ON WIRELESS PERSONAL MULTIMEDIA COMMUNICATIONS (WPMC 2020), 2020,
  • [23] Deep Learning Network Intrusion Detection Based on Network Traffic
    Wang, Hanyang
    Zhou, Sirui
    Li, Honglei
    Hu, Juan
    Du, Xinran
    Zhou, Jinghui
    He, Yunlong
    Fu, Fa
    Yang, Houqun
    ARTIFICIAL INTELLIGENCE AND SECURITY, ICAIS 2022, PT III, 2022, 13340 : 194 - 207
  • [24] Intrusion Detection using Deep Belief Network
    Raza, Kamran
    Adil, Syed Hasan
    MEHRAN UNIVERSITY RESEARCH JOURNAL OF ENGINEERING AND TECHNOLOGY, 2014, 33 (04) : 485 - 491
  • [25] Network intrusion detection methods based on deep learning
    Li X.
    Zhang S.
    Recent Patents on Engineering, 2021, 15 (04):
  • [26] Deep Learning Applications for Intrusion Detection in Network Traffic
    Getman, A. I.
    Rybolovlev, D. A.
    Nikolskaya, A. G.
    PROGRAMMING AND COMPUTER SOFTWARE, 2024, 50 (07) : 493 - 510
  • [27] Deep Learning for Network Intrusion Detection in Virtual Networks
    Spiekermann, Daniel
    Eggendorfer, Tobias
    Keller, Joerg
    ELECTRONICS, 2024, 13 (18)
  • [28] Novel Approach Using Deep Learning for Intrusion Detection and Classification of the Network Traffic
    Ahmad, Shahbaz
    Arif, Fahim
    Zabeehullah
    Iltaf, Naima
    2020 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND VIRTUAL ENVIRONMENTS FOR MEASUREMENT SYSTEMS AND APPLICATIONS (CIVEMSA 2020), 2020,
  • [29] Edge Computing Network Intrusion Detection System in IoT Using Deep Learning
    Hinojosa, Andres
    Majd, Nahid Ebrahimi
    2024 33RD INTERNATIONAL CONFERENCE ON COMPUTER COMMUNICATIONS AND NETWORKS, ICCCN 2024, 2024,
  • [30] Comparison Deep Learning Method to Traditional Methods Using for Network Intrusion Detection
    Dong, Bo
    Wang, Xue
    PROCEEDINGS OF 2016 8TH IEEE INTERNATIONAL CONFERENCE ON COMMUNICATION SOFTWARE AND NETWORKS (ICCSN 2016), 2016, : 581 - 585