Poincare-Melnikov-Arnold method for analytic planar maps

被引:43
|
作者
Delshams, A
Ramirez-Ros, R
机构
[1] Departament de Matemàtica Aplicada I, Universitat Politècnica de Catalunya, 08028 Barcelona
关键词
D O I
10.1088/0951-7715/9/1/001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Poincare-Melnikov-Arnold method for planar maps gives rise to a Melnikov function defined by an infinite and (a priori) analytically uncomputable sum. Under an assumption of meromorphicity, residues theory can be applied to provide an equivalent finite sum. Moreover, the Melnikov function turns out to be an elliptic function and a general criterion about non-integrability is provided. Several examples are presented with explicit estimates of the splitting angle. In particular, the non-integrability of non-trivial symmetric entire perturbations of elliptic billiards is proved, as well as the non-integrability of standard-like maps.
引用
收藏
页码:1 / 26
页数:26
相关论文
共 48 条
  • [21] The Melnikov method of heteroclinic orbits for a class of planar hybrid piecewise-smooth systems and application
    Li, Shuangbao
    Shen, Chao
    Zhang, Wei
    Hao, Yuxin
    NONLINEAR DYNAMICS, 2016, 85 (02) : 1091 - 1104
  • [22] Homoclinic connections in strongly self-excited nonlinear oscillators: The Melnikov function and the elliptic Lindstedt-Poincare method
    Belhaq, M
    Fiedler, B
    Lakrad, F
    NONLINEAR DYNAMICS, 2000, 23 (01) : 67 - 86
  • [23] Poincare maps and near-collision dynamics for a restricted planar (n+1)-body problem
    Alvarez-Ramirez, Martha
    Garcia, Antonio
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 233 : 328 - 337
  • [24] A Robust Poincare Maps Method for Damage Detection based on Single Type of Measurement
    Yang, Zhi-Bo
    Wang, Ya-Nan
    Zuo, Hao
    Zhang, Xing-Wu
    Xie, Yong
    Chen, Xue-Feng
    12TH INTERNATIONAL CONFERENCE ON DAMAGE ASSESSMENT OF STRUCTURES, 2017, 842
  • [25] BATCH SIZES FOR THE BATCHING METHOD OF COLORING PLANAR MAPS
    WILLIAMS, MH
    INFORMATION PROCESSING LETTERS, 1980, 11 (4-5) : 186 - 189
  • [26] A High-Order Melnikov Method for Heteroclinic Orbits in Planar Vector Fields and Heteroclinic Persisting Perturbations
    Zhong, Yi
    JOURNAL OF MATHEMATICS, 2021, 2021
  • [28] Transferring the eigenvector obtained by the method of analytic hierarchy process to maps
    Cengiz, Tülay
    Çelem, Hayran
    Journal of Applied Sciences, 2006, 6 (06) : 1265 - 1274
  • [29] Accelerated PET kinetic maps estimation by analytic fitting method
    Scipioni, Michele
    Giorgetti, Assuero
    Della Latta, Daniele
    Fucci, Sabrina
    Positano, Vincenzo
    Landini, Luigi
    Santarelli, Maria Filomena
    COMPUTERS IN BIOLOGY AND MEDICINE, 2018, 99 : 221 - 235
  • [30] The Melnikov method for detecting chaotic dynamics in a planar hybrid piecewise-smooth system with a switching manifold
    Li, Shuangbao
    Gong, Xiaojun
    Zhang, Wei
    Hao, Yuxin
    NONLINEAR DYNAMICS, 2017, 89 (02) : 939 - 953