IMPLICITLY RESTARTED GENERALIZED SECOND-ORDER ARNOLDI TYPE ALGORITHMS FOR THE QUADRATIC EIGENVALUE PROBLEM

被引:0
|
作者
Jia, Zhongxiao [1 ]
Sun, Yuquan [2 ,3 ]
机构
[1] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
[2] Beihang Univ, LMIB, Beijing 100191, Peoples R China
[3] Beihang Univ, Sch Math & Syst Sci, Beijing 100191, Peoples R China
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2015年 / 19卷 / 01期
基金
美国国家科学基金会;
关键词
QEP; GSOAR procedure; GSOAR method; RGSOAR method; Ritz vector; Refined Ritz vector; Implicit restart; Exact shifts; Refined shifts; SMALLEST SINGULAR TRIPLETS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the generalized second-order Arnoldi (GSOAR) method, a generalization of the SOAR method proposed by Bai and Su [SIAM J. Matrix Anal. Appl., 26 (2005): 640-659.], and the Refined GSOAR (RGSOAR) method for the quadratic eigenvalue problem (QEP). The two methods use the GSOAR procedure to generate an orthonormal basis of a given generalized second-order Krylov subspace, and with such basis they project the QEP onto the subspace and compute the Ritz pairs and the refined Ritz pairs, respectively. We develop implicitly restarted GSOAR and RGSOAR algorithms, in which we propose certain exact and refined shifts for respective use within the two algorithms. Numerical experiments on real-world problems illustrate the efficiency of the restarted algorithms and the superiority of the restarted RGSOAR to the restarted GSOAR. The experiments also demonstrate that both IGSOAR and IRGSOAR generally perform much better than the implicitly restarted Arnoldi method applied to the corresponding linearization problems, in terms of the accuracy and the computational efficiency.
引用
收藏
页码:1 / 30
页数:30
相关论文
共 50 条
  • [21] Nonlinear eigenvalue problem for second-order Hamiltonian systems
    A. A. Abramov
    V. I. Ul’yanova
    L. F. Yukhno
    Computational Mathematics and Mathematical Physics, 2008, 48 : 942 - 945
  • [22] Nonlinear Eigenvalue Problem for Second-Order Hamiltonian Systems
    Abramov, A. A.
    Ul'yanova, V. I.
    Yukhno, L. F.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2008, 48 (06) : 942 - 945
  • [23] The second-order biorthogonalization procedure and its application to quadratic eigenvalue problems
    Wang, B
    Su, YF
    Bai, ZJ
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 172 (02) : 788 - 796
  • [24] On the loss of orthogonality in the second-order Arnoldi process
    Lin Y.
    Bao L.
    Journal of Applied Mathematics and Computing, 2011, 35 (1-2) : 475 - 482
  • [25] Second-Order Krylov Subspace and Arnoldi Procedure
    柏兆俊
    苏仰锋
    Journal of Shanghai University, 2004, (04) : 378 - 390
  • [26] A semiorthogonal generalized Arnoldi method and its variations for quadratic eigenvalue problems
    Huang, Wei-Qiang
    Li, Tiexiang
    Li, Yung-Ta
    Lin, Wen-Wei
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2013, 20 (02) : 259 - 280
  • [27] An Inverse Eigenvalue Problem for Damped Gyroscopic Second-Order Systems
    Yuan, Yongxin
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2009, 2009
  • [28] The Bargmann System Related to the Second-Order Matrix Eigenvalue Problem
    Yue, Fengtong
    Yuan, Shujuan
    Ma, Xinghua
    Cui, Yuhuan
    Qu, Jingguo
    PROCEEDINGS OF THE THIRD INTERNATIONAL WORKSHOP ON MATRIX ANALYSIS AND APPLICATIONS, VOL 3, 2009, : 165 - 170
  • [29] The Integrable System on the Second-Order Eigenvalue Problem with the Potential and Speed
    Sun Yinghui
    Li Zihua
    APPLIED MATHEMATICS & INFORMATION SCIENCES, 2013, 7 (05): : 2035 - 2043
  • [30] Bargmann and Neumann System of the Second-Order Matrix Eigenvalue Problem
    Yuan, Shujuan
    Wang, Shuhong
    Liu, Wei
    Liu, Xiaohong
    Li, Li
    JOURNAL OF COMPUTERS, 2012, 7 (09) : 2216 - 2223