A novel electrochemical sensor based on a molecularly imprinted polymer for the determination of epigallocatechin gallate

被引:48
|
作者
Liu, Yanrui [1 ]
Zhu, Lili [1 ]
Hu, Yue [1 ]
Peng, Xinsheng [1 ]
Du, Jiangyan [1 ,2 ]
机构
[1] Nanjing Normal Univ, Coll Chem & Mat Sci, Nanjing 210046, Jiangsu, Peoples R China
[2] Jiangsu Collaborat Innovat Ctr Biomed Funct Mat, Nanjing 210046, Jiangsu, Peoples R China
关键词
Molecularly imprinted polymer; Electrochemical polymerization; Sensor; beta-CD; EGCG; PERFORMANCE LIQUID-CHROMATOGRAPHY; CARBON-PASTE ELECTRODE; GREEN-TEA; BETA-CYCLODEXTRIN; SENSITIVE DETERMINATION; ACID; CATECHINS; ASSAY; FILM; (-)-EPIGALLOCATECHIN;
D O I
10.1016/j.foodchem.2016.11.047
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
A novel electrochemical sensor based on the molecularly imprinted polymer (MIP) was fabricated by electrochemical polymerization of beta-cyclodextrins (beta-CD) and epigallocatechin-gallate (EGCG) on the graphene oxide (GO) modified glassy carbon (GO/GC) electrode for the first time. The MIP/GO/GC electrode exhibits an excellent ability of specific binding of EGCG and a rapid electrochemical response, high sensitivity and selectivity for determination of EGCG. This prepared MIP sensor presents distinct advantages over conventional electrochemical methods for EGCG determination because it is a one-step preparation and the template molecule can be easily removed by cyclic voltammetry scans, and no elution reagent is required. Under the optimal experimental conditions, the linear response range for EGCG concentrations by the sensor was 3 x 10(-8) mol/L to 1 x 10(-5) mol/L and the detection limit was 8.78 x 10(-9) mol/L(S/N = 3). The results demonstrate that the proposed MIP sensor can be a potential alternative for the determination of EGCG in tea samples. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1128 / 1134
页数:7
相关论文
共 50 条
  • [41] A novel electrochemical sensor based on metal nanoparticles and molecularly imprinted polymer nanocomposite with biological applications
    Shaker, Farzaneh
    Vardini, Mohammad Taghi
    Es'haghi, Moosa
    Kalhor, Ebrahim Ghorbani
    RUDARSKO-GEOLOSKO-NAFTNI ZBORNIK, 2022, 37 (01): : 65 - 77
  • [42] Electrochemical sensor for chloramphenicol based on novel multiwalled carbon nanotubes@molecularly imprinted polymer
    Yang, Guangming
    Zhao, Faqiong
    BIOSENSORS & BIOELECTRONICS, 2015, 64 : 416 - 422
  • [43] Novel Electrochemical Sensor Based on Electropolymerized Dopamine Molecularly Imprinted Polymer for Selective Detection of Pantoprazole
    Roushani, Mahmoud
    Karazan, Zahra Mirzaei
    IEEE SENSORS JOURNAL, 2022, 22 (07) : 6263 - 6269
  • [44] Molecularly Imprinted Polymer-Based Sensor for Electrochemical Detection of Cortisol
    Yulianti, Elly Septia
    Rahman, Siti Fauziyah
    Whulanza, Yudan
    BIOSENSORS-BASEL, 2022, 12 (12):
  • [45] Preparation and application of TNT electrochemical sensor based on molecularly imprinted polymer
    三硝基甲苯分子印迹电化学传感器的制备和应用
    Rao, Guoning (njraoguoning@163.com), 1600, Materials China (39): : 3757 - 3765
  • [46] Molecularly imprinted polymer-based sensor for electrochemical detection of erythromycin
    Ayankojo, Akinrinade George
    Reut, Jekaterina
    Ciocan, Valeriu
    Opik, Andres
    Syritski, Vitali
    TALANTA, 2020, 209
  • [47] Development of a molecularly imprinted polymer-based electrochemical sensor for tyrosinase
    Yarman, Aysu
    TURKISH JOURNAL OF CHEMISTRY, 2018, 42 (02) : 346 - 354
  • [48] A Novel Electrochemical Sensor Based on Silver Nanodendrites and Molecularly Imprinted Polymers for the Determination of Tetrabromobisphenol A in Water
    Xu, Wanzhen
    Zhang, Kun
    Wang, Ningwei
    Liu, Tao
    Huang, Weihong
    Liu, Tianshu
    Lu, Yi
    Yang, Wenming
    Li, Songjun
    ELECTROANALYSIS, 2018, 30 (12) : 2950 - 2958
  • [49] Preparation of an Electrochemical Sensor for Determination of Chlortetracycline Based on Molecularly Imprinted Film
    Gao Yang
    Wang Wei
    Liu Ying-Zi
    Tao Qiang
    Wan Xue
    Zhang Juan-Kun
    CHINESE JOURNAL OF ANALYTICAL CHEMISTRY, 2015, 43 (02) : 212 - 217
  • [50] A Portable Electrochemical Sensor for Caffeine and (-)Epigallocatechin gallate (EGCG) Based on Molecularly Imprinted Poly(Ethylene-co-Vinyl-Alcohol) Recognition Element
    Chung, I-Cheng
    Chang, Chih-Chun
    Chiu, Han-Sheng
    Jiang, Shih-Fan
    Lee, Mei-Hwa
    Liu, Bin-Da
    Huang, Chun-Yueh
    Lin, Hung-Yin
    INEC: 2010 3RD INTERNATIONAL NANOELECTRONICS CONFERENCE, VOLS 1 AND 2, 2010, : 362 - +