GLOBAL HYPOELLIPTICITY, GLOBAL SOLVABILITY AND NORMAL FORM FOR A CLASS OF REAL VECTOR FIELDS ON A TORUS AND APPLICATION

被引:18
|
作者
Petronilho, G. [1 ]
机构
[1] Univ Fed Sao Carlos, Dept Matemat, BR-13565905 Sao Carlos, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Global hypoellipticity; global solvability; normal form; OPERATORS; REGULARITY;
D O I
10.1090/S0002-9947-2011-05359-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The main purpose of this paper is to present a class of real vector fields defined on a torus for which the concepts of global hypoellipticity and global smooth solvability are equivalent. Furthermore, such a vector field is globally hypoelliptic if and only if its adjoint is globally hypoelliptic, and therefore we can reduce it to its normal form. As an application, we study global C-infinity solvability for certain classes of sub-Laplacians.
引用
收藏
页码:6337 / 6349
页数:13
相关论文
共 50 条
  • [21] Global Hypoellipticity for a Class of Pseudo-differential Operators on the Torus
    Fernando de Ávila Silva
    Rafael Borro Gonzalez
    Alexandre Kirilov
    Cleber de Medeira
    Journal of Fourier Analysis and Applications, 2019, 25 : 1717 - 1758
  • [22] GLOBAL ANALYTIC HYPOELLIPTICITY OF A CLASS OF DEGENERATE ELLIPTIC OPERATORS ON THE TORUS
    Cordaro, Paulo D.
    Himonas, A. Alexandrou
    MATHEMATICAL RESEARCH LETTERS, 1994, 1 (04) : 501 - 510
  • [23] Global Hypoellipticity for a Class of Pseudo-differential Operators on the Torus
    Silva, Fernando de Avila
    Gonzalez, Rafael Borro
    Kirilov, Alexandre
    de Medeira, Cleber
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2019, 25 (04) : 1717 - 1758
  • [24] Global solvability of real analytic complex vector fields in two variables
    Meziani, Abdelhamid
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 251 (10) : 2896 - 2931
  • [25] WKB analysis to global solvability and hypoellipticity
    Gramchev, T
    Yoshino, M
    PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 1995, 31 (03) : 443 - 464
  • [26] Global Gevrey solvability for a class of involutive systems on the torus
    Bergamasco, Adalberto P.
    de Medeira, Cleber
    Zani, Sergio L.
    REVISTA MATEMATICA IBEROAMERICANA, 2021, 37 (04) : 1459 - 1488
  • [27] Global Denjoy-Carleman hypoellipticity for a class of systems of complex vector fields and perturbations
    Victor, Bruno de Lessa
    Arias Junior, Alexandre
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2021, 200 (04) : 1367 - 1398
  • [29] Existence of global solutions for a class of vector fields on the three-dimensional torus
    Bergamasco, Adalberto P.
    Dattori da Silva, Paulo L.
    Gonzalez, Rafael B.
    BULLETIN DES SCIENCES MATHEMATIQUES, 2018, 148 : 53 - 76
  • [30] Nonexistence of global solutions for a class of complex vector fields on two-torus
    Dattori da Silva, Paulo L.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 351 (02) : 543 - 555