Erythritol-Vermiculite form-stable phase change materials for thermal energy storage

被引:20
|
作者
Leng, Guanghui [1 ]
Qiao, Geng [2 ]
Xu, Guizhi [3 ]
Vidal, Thibault [4 ]
Ding, Yulong [1 ]
机构
[1] Univ Birmingham, Birmingham Ctr Energy Storage, Birmingham, W Midlands, England
[2] Global Energy Interconnect Res Inst Europe GmbH, Berlin, Germany
[3] China State Grid, Global Energy Interconnect Res Inst, Beijing, Peoples R China
[4] Polytech Tours, Dept Mecan & Syst, Tours, France
基金
英国工程与自然科学研究理事会; 中国国家自然科学基金;
关键词
Thermal energy storage; Form-stable phase change materials; Vermiculite; Erythritol; COMPOSITE;
D O I
10.1016/j.egypro.2017.12.471
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This work is concerned about form-stable phase change materials (FPCM) for thermal energy storage consisting of Erythritol as the phase change material (PCM) and Vermiculite as a supporting material (SM). The materials were fabricated using a method derived from the pharmaceutical and ceramics industry, involving milling, mixing/granulation, shaping, drying and sintering. It is found that the PCM can distribute evenly in SM and composites present an excellent chemical compatibility. The materials containing 70% PCM give an optimal formulation in terms of energy density, extent of PCM leakage during sintering and thermophysical properties. FT-IR analyses suggested an excellent chemical compatibility between vermiculite and the Vermiculite. Scanning electron microscope (SEM) analyses demonstrated an even distribution of the PCM within the diatomite structure. Differential scanning calorimetry (DSC) measurements showed that melting temperature of the material was approximately 118.6 degrees C with a latent heat of 216.7kJ/kg, and the effective thermal storage density was 605.56 kJ/kg (0 similar to 200 degrees C). The latent heat of the aforementioned composite material decreased only 3.41% and no significant decline was observed after 300 times of heating-cooling cycles. (C) 2017 The Authors. Published by Elsevier Ltd. Peer-review under responsibility of the scientific committee of the 9th International Conference on Applied Energy.
引用
收藏
页码:3363 / 3368
页数:6
相关论文
共 50 条
  • [21] Preparation and characterization of form-stable paraffin/polycaprolactone composites as phase change materials for thermal energy storage
    Aludin, M. S.
    Akmal, S. Saidatul
    ENGINEERING TECHNOLOGY INTERNATIONAL CONFERENCE 2016 (ETIC 2016), 2017, 97
  • [22] Form-stable polyethylene glycol/activated carbon composite phase change materials for thermal energy storage
    Rui Zheng
    Zhengyu Cai
    Chaoming Wang
    Jianfen Shen
    Shuaiao Xie
    Zhiyong Qi
    Journal of Thermal Analysis and Calorimetry, 2023, 148 : 9937 - 9946
  • [23] Paraffin/Poly (methyl methacrylate) blends as form-stable phase change materials for thermal energy storage
    Tong, Xiao-Mei
    Zhang, Min
    Song, Ling
    Ma, Pan
    ENVIRONMENTAL BIOTECHNOLOGY AND MATERIALS ENGINEERING, PTS 1-3, 2011, 183-185 : 1573 - 1576
  • [24] Paraffin@graphene/silicon rubber form-stable phase change materials for thermal energy storage
    Deng, Hao
    Guo, Yongli
    He, Fangfang
    Yang, Zhijian
    Fan, Jinghui
    He, Ren
    Zhang, Kai
    Yang, Wenbin
    FULLERENES NANOTUBES AND CARBON NANOSTRUCTURES, 2019, 27 (08) : 626 - 631
  • [25] Preparation and characterization of form-stable paraffin/polyurethane composites as phase change materials for thermal energy storage
    Chen, Keping
    Yu, Xuejiang
    Tian, Chunrong
    Wang, Jianhua
    ENERGY CONVERSION AND MANAGEMENT, 2014, 77 : 13 - 21
  • [26] Thermal properties of sodium nitrate-expanded vermiculite form-stable composite phase change materials
    Li, Ruguang
    Zhu, Jiaoqun
    Zhou, Weibing
    Cheng, Xiaomin
    Li, Yuanyuan
    MATERIALS & DESIGN, 2016, 104 : 190 - 196
  • [27] Salt hydrate/expanded vermiculite composite as a form-stable phase change material for building energy storage
    Xie, Ning
    Luo, Jianmin
    Li, Zhongping
    Huang, Zhaowen
    Gao, Xuenong
    Fang, Yutang
    Zhang, Zhengguo
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2019, 189 : 33 - 42
  • [28] Hexadecanol/phase change polyurethane composite as form-stable phase change material for thermal energy storage
    Tang, Bingtao
    Wang, Lingjuan
    Xu, Yuanji
    Xiu, Jinghai
    Zhang, Shufen
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2016, 144 : 1 - 6
  • [29] Erythritol/expanded graphite form-stable phase change materials with excellent thermophysical properties
    Yan, Kening
    Qiu, Lin
    Feng, Yanhui
    JOURNAL OF ENERGY STORAGE, 2023, 68
  • [30] Lauric acid/bentonite/flake graphite composite as form-stable phase change materials for thermal energy storage
    Liu, Songyang
    Han, Jie
    Gao, Qingjie
    Kang, Wenze
    Ren, Ruichen
    Wang, Lunan
    Chen, Dan
    Wu, Dapeng
    MATERIALS EXPRESS, 2020, 10 (02) : 214 - 224