Nonlinear flux "concave-convex" problems: a fibering method approach

被引:0
|
作者
Sabina de Lis, Jose C. [1 ,2 ]
机构
[1] Univ La Laguna, Dept Anal Matemat, POB 456, San Cristobal la Laguna 38200, Spain
[2] Univ La Laguna, IUEA, POB 456, San Cristobal la Laguna 38200, Spain
关键词
Variational methods; Minimax methods; Degenerate diffusion; 35J20; 35J70; POSITIVE SOLUTIONS; ELLIPTIC PROBLEM; MULTIPLICITY; EXISTENCE;
D O I
10.1007/s43036-020-00092-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper studies the nonlinear flux problem: where AI, stands for the p -Laplacian operator, 12 c RN is a bounded smooth domain, 2 is a positive parameter and v stands for the outer unit normal at a Q. The exponents q, r are assumed to vary in the concave convex regime 1 <q <p <r while 1 <p <N and r is subcritical r <p*. Our objective here is showing the existence, for every 0 <2 <2, of two different sets of infinitely many solutions of (P). The energy functional associated to the problem exhibits a different sign on each of these sets. The analysis of positive energy solutions involves the so-called fibering method (Drabek and Pohozaev in Proc R Soc Edinb Sect A 127(4):703-726, 1997). Our results have been inspired by similar ones in Garcia-Azorero et al. (J Differ Equ 198(1):91-128, 2004), Garcia-Azorero and Peral (Trans Am Math Soc 323(2):877-895, 1991) and El Hamidi (Commun Pure Appl Anal 3(2):253-265, 2004). This work can be considered as a natural continuation of Sabina de Lis (Differ Equ Appl 3(4):469-486, 2011), Sabina de Lis and Segura de Leon (Adv Nonlinear Stud 15(1):61-90, 2015) and Sabina de Lis and Segura de Leon (Nonlinear Anal 113:283-297, 2015). The main achievement of the latter of these works consisted in showing a global existence result of positive solutions to (P).
引用
收藏
页码:1738 / 1753
页数:16
相关论文
共 50 条
  • [11] The concave-convex procedure
    Yuille, AL
    Rangarajan, A
    NEURAL COMPUTATION, 2003, 15 (04) : 915 - 936
  • [12] GENERAL CONCAVE-CONVEX GAMES
    TYNYANSK.NT
    DOKLADY AKADEMII NAUK SSSR, 1969, 184 (02): : 303 - &
  • [13] CONCAVE-CONVEX PROBLEMS OF STOCHASTIC PROGRAMMING UNDER CONDITIONS OF INDETERMINACY
    LEBEDEV, VN
    ENGINEERING CYBERNETICS, 1969, (01): : 7 - &
  • [14] Nc machining method of concave-convex arc gear
    Wang, Jian-Ping
    International Journal of Mechatronics and Applied Mechanics, 2019, 2 (06): : 97 - 102
  • [15] Limits as p → ∞ of p-Laplacian concave-convex problems
    Charro, Fernando
    Peral, Ireneo
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (04) : 2637 - 2659
  • [16] Distributed Saddle Point Problems for Strongly Concave-Convex Functions
    Qureshi, Muhammad I.
    Khan, Usman A.
    IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, 2023, 9 : 679 - 690
  • [17] Fractional weighted problems with a general nonlinearity or with concave-convex nonlinearities
    Appolloni, Luigi
    Mugnai, Dimitri
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (14) : 11571 - 11590
  • [18] The Concave-Convex procedure (CCCP)
    Yuille, AL
    Rangarajan, A
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 14, VOLS 1 AND 2, 2002, 14 : 1033 - 1040
  • [19] Critical quasilinear elliptic problems using concave-convex nonlinearities
    da Silva, E. D.
    Carvalho, M. L. M.
    Goncalves, J. V.
    Goulart, C.
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2019, 198 (03) : 693 - 726
  • [20] Dirichlet Problems with an Indefinite and Unbounded Potential and Concave-Convex Nonlinearities
    Gasinski, Leszek
    Papageorgiou, Nikolaos S.
    ABSTRACT AND APPLIED ANALYSIS, 2012,