Classifying Legal Norms with Active Machine Learning

被引:20
|
作者
Waltl, Bernhard [1 ]
Muhr, Johannes [1 ]
Glaser, Ingo [1 ]
Bonczek, Georg [1 ]
Scepankova, Elena [1 ]
Matthes, Florian [1 ]
机构
[1] Tech Univ Munich, Dept Informat, Software Engn Business Informat Syst, Munich, Germany
来源
关键词
norm classification; active machine learning; text mining; CLASSIFICATION;
D O I
10.3233/978-1-61499-838-9-11
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper describes an extended machine learning approach to classify legal norms in German statutory texts. We implemented an active machine learning (AML) framework based on open-source software. Within the paper we discuss different query strategies to optimize the selection of instances during the learning phase to decrease the required training data. The approach was evaluated within the domain of tenancy law. Thereby, we manually labeled the 532 sentences into eight different functional types and achieved an average F1 score of 0.74. Comparing three different classifiers and four query strategies the classification performance F1 varies from 0.60 to 0.93. We could show that in norm classification tasks AML is more efficient than conventional supervised machine learning approaches.
引用
收藏
页码:11 / 20
页数:10
相关论文
共 50 条
  • [31] CLASSIFYING EEG SIGNAL SEGMENTS USING MACHINE LEARNING
    Anghel, Ana Magdalena
    Zaharia, Andrei
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN SERIES C-ELECTRICAL ENGINEERING AND COMPUTER SCIENCE, 2024, 86 (03): : 113 - 120
  • [32] Classifying snapshots of the doped Hubbard model with machine learning
    Annabelle Bohrdt
    Christie S. Chiu
    Geoffrey Ji
    Muqing Xu
    Daniel Greif
    Markus Greiner
    Eugene Demler
    Fabian Grusdt
    Michael Knap
    Nature Physics, 2019, 15 : 921 - 924
  • [33] Classifying the clouds of Venus using unsupervised machine learning
    Mittendorf, J.
    Molaverdikhani, K.
    Ercolano, B.
    Giovagnoli, A.
    Grassi, T.
    ASTRONOMY AND COMPUTING, 2024, 49
  • [34] AIggregate: A Machine Learning Approach for Classifying Micelle Shape
    Mertzios, Alkiviadis
    Papavasileiou, Konstantinos
    Peristeras, Loukas
    Giannakopoulos, George
    PROCEEDINGS OF THE 12TH HELLENIC CONFERENCE ON ARTIFICIAL INTELLIGENCE, SETN 2022, 2022,
  • [35] A hybrid machine learning model for classifying time series
    Elen, Abdullah
    Avuclu, Emre
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (02): : 1219 - 1237
  • [36] Classifying online Job Advertisements through Machine Learning
    Boselli, Roberto
    Cesarini, Mirko
    Mercorio, Fabio
    Mezzanzanica, Mario
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2018, 86 : 319 - 328
  • [37] Classifying and quantifying changes in papilloedema using machine learning
    Branco, Joseph
    Wang, Jui-Kai
    Elze, Tobias
    Garvin, Mona K.
    Pasquale, Louis R.
    Kardon, Randy
    Woods, Brian
    Szanto, David
    Kupersmith, Mark J.
    BMJ NEUROLOGY OPEN, 2024, 6 (01)
  • [38] CLASSIFYING EEG SIGNAL SEGMENTS USING MACHINE LEARNING
    Anghel, Ana Magdalena
    Zaharia, Andrei
    UPB Scientific Bulletin, Series C: Electrical Engineering and Computer Science, 2024, 86 (03): : 113 - 120
  • [39] Identifying and classifying social groups: A machine learning approach
    Roffilli, Matteo
    Lomi, Alessandro
    DATA SCIENCE AND CLASSIFICATION, 2006, : 149 - +
  • [40] Predicting and Classifying Breast Cancer Using Machine Learning
    Alkhathlan, Lina
    Saudagar, Abdul Khader Jilani
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2022, 29 (06) : 497 - 514