Au nanoparticle modified GaN photoelectrode for photoelectrochemical hydrogen generation

被引:16
|
作者
Tu, Wen-Hsun [1 ,2 ]
Hsu, Yu-Kuei [3 ]
Yen, Cheng-Hsiung [4 ]
Wu, Chih-I [2 ]
Hwang, Jih-Shang [4 ]
Chen, Li-Chyong [5 ]
Chen, Kuei-Hsien [1 ,3 ]
机构
[1] Acad Sinica, Inst Atom & Mol Sci, Taipei 10617, Taiwan
[2] Natl Taiwan Univ, Grad Inst Photon & Optoelect, Taipei 10617, Taiwan
[3] Natl Dong Hwa Univ, Dept Optoelect Engn, Hualien 97401, Taiwan
[4] Natl Taiwan Ocean Univ, Inst Optoelect Sci, Keelung 20224, Taiwan
[5] Natl Taiwan Univ, Ctr Condensed Matter Sci, Taipei 10617, Taiwan
关键词
Photoelectrochemistry; Water splitting; GaN; Gold nanoparticle; Hydrogen generation; WATER; EVOLUTION;
D O I
10.1016/j.elecom.2011.02.036
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Systematic investigations of photoelectrochemical behavior between Au nano-particle modified n- and p-GaN were reported in this study. With Au nanoparticles sputtered on the surface, strong Fermi level pinning caused by the creation of metal induced gap states alters the behavior of electrolyte/GaN interface. Under illumination, the photocurrent of p-GaN at zero bias. exhibited 25 times enhancement, whereas that of n-GaN showed slight decrease. The overall hydrogen generation efficiency of p-GaN in NCl solution was increased from 0.02% to around 0.59%. The enhancement can be attributed to the different energy shift of the surface band edge at the interface according to the doping of GaN. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:530 / 533
页数:4
相关论文
共 50 条
  • [41] Improved photoelectrochemical detection of mercury (II) with a TiO2-modified composite photoelectrode
    Chamier, Jessica
    Crouch, Andrew M.
    MATERIALS CHEMISTRY AND PHYSICS, 2012, 132 (01) : 10 - 16
  • [42] Photoelectrochemical studies of CdS nanoparticle-modified electrodes
    Hickey, SG
    Riley, DJ
    JOURNAL OF PHYSICAL CHEMISTRY B, 1999, 103 (22): : 4599 - 4602
  • [43] CdS nanoparticle-modified electrodes for photoelectrochemical studies
    Drouard, S
    Hickey, SG
    Riley, DJ
    CHEMICAL COMMUNICATIONS, 1999, (01) : 67 - 68
  • [44] Investigation of the p-GaN layer thickness of InGaN-based photoelectrodes for photoelectrochemical hydrogen generation
    Iida, Daisuke
    Shimizu, Takamitsu
    Ohkawa, Kazuhiro
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2019, 58 (SC)
  • [45] Photoelectrochemical CO2 Conversion to Hydrocarbons Using an AlGaN/GaN-Si Tandem Photoelectrode
    Deguchi, Masahiro
    Yotsuhashi, Satoshi
    Yamada, Yuka
    Ohkawa, Kazuhiro
    ADVANCES IN CONDENSED MATTER PHYSICS, 2015, 2015
  • [46] Au nanoparticle sensitized ZnO nanopencil arrays for photoelectrochemical water splitting
    Wang, Tuo
    Lv, Rui
    Zhang, Peng
    Li, Changjiang
    Gong, Jinlong
    NANOSCALE, 2015, 7 (01) : 77 - 81
  • [47] Investigation of CuO/ITO Photoelectrode Fabricated by PVD for Efficient Photoelectrochemical Water Splitting and Hydrogen Evolution
    Junaid, Muhammad
    Noor-ul-Ain
    Sharaf, Mohamed
    El-Meligy, Mohammad
    Ahmad, Nazir
    LUMINESCENCE, 2024, 39 (11)
  • [48] Photoelectrochemical properties of MOF-induced surface-modified TiO2 photoelectrode
    Jiao, Wei
    Zhu, Jiaxing
    Ling, Yun
    Deng, Mingli
    Zhou, Yaming
    Feng, Pingyun
    NANOSCALE, 2018, 10 (43) : 20339 - 20346
  • [49] Photoelectrochemical and Photocatalytic Hydrogen Generation: A Virtual Issue
    Kamat, Prashant V.
    Sivula, Kevin
    ACS ENERGY LETTERS, 2022, 7 (12): : 4379 - 4380
  • [50] Photoelectrochemical Hydrogen Generation: Effect of Photocatalyst Dispersion
    Bruce, D. R.
    Wilkinson, D. P.
    FULLERENES, NANOTUBES, AND CARBON NANOSTRUCTURES - 221ST ECS MEETING, 2013, 45 (20): : 155 - 171