Spin-locked transport in a two-dimensional electron gas

被引:7
|
作者
Anghel, S. [1 ]
Passmann, F. [1 ]
Schiller, K. J. [1 ]
Moore, J. N. [2 ]
Yusa, G. [2 ,3 ]
Mano, T. [4 ]
Noda, T. [4 ]
Betz, M. [1 ]
Bristow, A. D. [1 ,5 ]
机构
[1] Tech Univ Dortmund, Expt Phys 2, Otto Hahn Str 4a, D-44227 Dortmund, Germany
[2] Tohoku Univ, Dept Phys, Sendai, Miyagi 9808578, Japan
[3] Tohoku Univ, Ctr Spintron Res Network, Sendai, Miyagi 9808578, Japan
[4] Natl Inst Mat Sci, Tsukuba, Ibaraki 3050047, Japan
[5] West Virginia Univ, Dept Phys & Astron, Morgantown, WV 26506 USA
关键词
SPINTRONICS;
D O I
10.1103/PhysRevB.101.155414
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Spin-orbit interactions in solids have inspired innovative physics for spin-based technologies. One such example is the persistent spin helix, where spin-orbit interactions from the semiconductor lattice are balanced with those in asymmetric quantum wells, to create long-lived spin textures. Spin transport in the presence of the momentum-dependent spin-orbit interactions lead to Larmor precession and subsequent dephasing that challenges the design of current spin-based information processing devices. We demonstrate that external magnetic fields can be applied to overcome this issue for spin-polarized charge carriers transported by in-plane electric fields. A frame of reference picture is introduced to describe the emergence and dynamics of the polarization-locked spin-wave packet after optical excitation. Applying well-matched magnetic fields maintains the persistent spin-helix profile regardless of whether the frame of reference is in motion or not. Monte Carlo simulations allow this traveling persistent spin-helix concept to be extended to a proposed spin Hall-effect transistor to ease design requirements.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Electrical control of spin relaxation anisotropy during drift transport in a two-dimensional electron gas
    Hernandez, F. G. G.
    Ferreira, G. J.
    Luengo-Kovac, M.
    Sih, V
    Kawahala, N. M.
    Gusev, G. M.
    Bakarov, A. K.
    PHYSICAL REVIEW B, 2020, 102 (12)
  • [42] Spin-polarized resonant transport in a hybrid ferromagnetic two-dimensional electron gas structure
    Kumar, S. Bala
    Jalil, M. B. A.
    Tan, S. G.
    PHYSICAL REVIEW B, 2007, 75 (15)
  • [43] Model for ballistic spin-transport in ferromagnet/two-dimensional electron gas/ferromagnet structures
    Schäpers, T
    Nitta, J
    Heersche, HB
    Takayanagi, H
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2002, 13 (2-4): : 564 - 567
  • [44] Spin-polarized transport in a lateral two-dimensional diluted magnetic semiconductor electron gas
    Yang, W
    Chang, K
    Wu, XG
    Zheng, HZ
    APPLIED PHYSICS LETTERS, 2006, 88 (08)
  • [45] Electron transport in suspended semiconductor structures with two-dimensional electron gas
    Pogosov, A. G.
    Budantsev, M. V.
    Zhdanov, E. Yu.
    Pokhabov, D. A.
    Bakarov, A. K.
    Toropov, A. I.
    APPLIED PHYSICS LETTERS, 2012, 100 (18)
  • [46] Spin current in a two-dimensional electron gas tunnelling junction
    Wang, J.
    Chan, K. S.
    EUROPHYSICS LETTERS, 2006, 75 (02): : 281 - 286
  • [47] Thermally induced spin polarization of a two-dimensional electron gas
    Dyrdal, A.
    Inglot, M.
    Dugaev, V. K.
    Barnas, J.
    PHYSICAL REVIEW B, 2013, 87 (24)
  • [48] Effect of screening on spin polarization in a two-dimensional electron gas
    V'yurkov, V
    Vetrov, A
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2004, 22 (1-3): : 442 - 445
  • [49] Spin-plasmon oscillations of the two-dimensional electron gas
    Magarill, LI
    Chaplik, AV
    Éntin, MV
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2001, 92 (01) : 153 - 158