Reinforcement learning for optimal scheduling of Glioblastoma treatment with Temozolomide

被引:17
|
作者
Zade, Amir Ebrahimi [1 ]
Haghighi, Seyedhamidreza Shahabi [1 ]
Soltani, Madjid [2 ,3 ,4 ,5 ]
机构
[1] Amirkabir Univ Technol, Fac Ind Engn & Syst Management, Tehran, Iran
[2] KN Toosi Univ Technol, Fac Mech Engn, Tehran 1969764499, Iran
[3] KN Toosi Univ Technol, Adv Bioengn Initiat Ctr, Computat Med Ctr, Tehran, Iran
[4] Univ Waterloo, Ctr Biotechnol & Bioengn CBB, Waterloo, ON, Canada
[5] Univ Waterloo, Dept Elect & Comp Engn, Waterloo, ON, Canada
关键词
Glioblastoma multiforme; Treatment scheduling; Reinforcement learning; Multi scale modeling; Temozolomide; CARCINOMA IN-SITU; BRAIN-TUMORS; O-6-METHYLGUANINE-DNA METHYLTRANSFERASE; ADJUVANT TEMOZOLOMIDE; INDIVIDUAL PATIENTS; MATHEMATICAL-MODEL; GLIOMA GROWTH; SOLID TUMOR; PHASE-II; RADIOTHERAPY;
D O I
10.1016/j.cmpb.2020.105443
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Background: : Glioblastoma multiforme (GBM) is the most frequent primary brain tumor in adults and Temozolomide (TMZ) is an effective chemotherapeutic agent for its treatment. In Silico models of GBM growth provide an appropriate foundation for analysis and comparison of different regimens. We propose a mathematical frame for patient specific design of optimal chemotherapy regimens for GBM patients. Methods: : The proposed frame includes online interaction of a virtual GBM with an optimizing agent. Spatiotemporal dynamics of GBM growth and its response to TMZ are simulated with a three dimensional hybrid cellular automaton. Q learning is tailored to the virtual GBM for treatment optimization aimed at minimizing tumor size at the end of treatment course. Q learning consists of a learning agent that interacts with the virtual GBM. System state is affected by the agent decisions and the obtained rewards guide Q learning to the optimal schedule. Results: : Computational results confirm that the optimal chemotherapy schedule depends on some patient specific parameters including body weight, tumor size and its position in the brain. Furthermore, the algorithm is used for scheduling 2100 mg of TMZ on a virtual GBM and the obtained schedule is to administer150 mg of TMZ every other day. The obtained schedule is compared to the standard 7/14 regimen and the results show that it is superior to the 7/14 regimen in minimizing tumor size. Conclusion: : The proposed frame is an appropriate decision support system for patient specific design of TMZ administration regimens on GBM patients. Also, since the obtained optimal schedule outperforms the standard 7/14 regimen, it is worthy of further clinical testing. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Sensitizing temozolomide effects by amitriptyline for glioblastoma treatment
    Saentaweesuk, Waraporn
    Phansomboon, Natthiphorn
    Saentaweesuk, Thitiprapa
    Silsirivanit, Atit
    Araki, Norie
    CANCER SCIENCE, 2023, 114 : 2209 - 2209
  • [22] Combination treatment for glioblastoma with temozolomide, DFMO and radiation
    Alexiou, George A.
    Vartholomatos, Evrysthenis
    Tsamis, Konstantinos I.
    Peponi, Evangelia
    Markopoulos, George
    Papathanasopoulou, Vasiliki A.
    Tasiou, Ifigeneia
    Ragos, Vassilios
    Tsekeris, Periklis
    Kyritsis, Athanasios P.
    Galani, Vasiliki
    JOURNAL OF BUON, 2019, 24 (01): : 397 - 404
  • [23] Glioblastoma Treatment in the Elderly in the Temozolomide Therapy Era
    Coate, Linda
    McNamara, Mairead G.
    Lwin, Zarnie
    MacFadden, Derek
    Al-Zahrani, Ahmed
    Massey, Christine
    Metzard, Cynthia
    Millar, Barbara Ann
    Sahgal, Arjun
    Laperriere, Normand
    Mason, Warren P.
    CANADIAN JOURNAL OF NEUROLOGICAL SCIENCES, 2014, 41 (03) : 357 - 362
  • [24] Effectiveness of adjuvant temozolomide treatment in patients with glioblastoma
    Alnaami, Ibrahim M.
    Al-Nuaimi, Saleem K.
    Senthilselvan, Ambikaipakan
    Murtha, Albert D.
    Walling, Simon
    Mehta, Vivek
    Gourishankar, Sita
    NEUROSCIENCES, 2013, 18 (04) : 349 - 355
  • [25] Therapeutic Perspective of Temozolomide Resistance in Glioblastoma Treatment
    Xia, Qin
    Liu, Liqun
    Li, Yang
    Zhang, Pei
    Han, Da
    Dong, Lei
    CANCER INVESTIGATION, 2021, 39 (08) : 627 - 644
  • [26] The effect of flubendazole on temozolomide treatment in glioblastoma cell
    Dvorakova, K.
    Vitovcova, B.
    Skarka, A.
    Caltova, K.
    Rudolf, E.
    ANNALS OF ONCOLOGY, 2022, 33 (08) : S1410 - S1411
  • [27] Temozolomide presents breakthrough in glioblastoma multiforme treatment
    Sansom, C
    PHARMACEUTICAL SCIENCE & TECHNOLOGY TODAY, 1999, 2 (04): : 131 - 133
  • [28] Repurposing Penfluridol in Combination with Temozolomide for the Treatment of Glioblastoma
    Kim, Hyungsin
    Chong, Kyuha
    Ryu, Byung-Kyu
    Park, Kyung-Jae
    Yu, Mi Ok
    Lee, Jihye
    Chung, Seok
    Choi, Seongkyun
    Park, Myung-Jin
    Chung, Yong-Gu
    Kang, Shin-Hyuk
    CANCERS, 2019, 11 (09)
  • [29] Aspergillosis in a Patient Receiving Temozolomide for the Treatment of Glioblastoma
    Munhoz, Rodrigo Ramella
    Pereira Picarelli, Andrea Arvai
    Troques Mitteldorf, Cristina Aparecida
    Feher, Olavo
    CASE REPORTS IN ONCOLOGY, 2013, 6 (02): : 410 - 415
  • [30] TEMOZOLOMIDE DOSE DENSE AS SALVAGE TREATMENT FOR GLIOBLASTOMA
    Bertolini, F.
    Depenni, R.
    Fontana, A.
    Valentini, A.
    Giacobazzi, P.
    Falasca, A.
    Bertoni, F.
    Conte, P. F.
    NEURO-ONCOLOGY, 2010, 12 : 43 - 43