Consistent affinity representation learning with dual low-rank constraints for multi-view subspace clustering

被引:8
|
作者
Fu, Lele [1 ]
Li, Jieling [2 ]
Chen, Chuan [3 ]
机构
[1] Sun Yat sen Univ, Sch Syst Sci & Engn, Guangzhou, Peoples R China
[2] Xiamen Univ, Dept Informat & Commun Engn, Xiamen, Peoples R China
[3] Sun Yat sen Univ, Sch Comp Sci & Engn, Guangzhou, Peoples R China
关键词
Multi-view clustering; Consistent representation; Subspace learning; Grassmann manifold; MATRIX; FRAMEWORK; ALGORITHM;
D O I
10.1016/j.neucom.2022.09.145
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-view clustering aims to achieve better accuracy of data clustering by leveraging complementary information embedded in multi-view data. How to learn a consistent clustering-friendly affinity repre-sentation matrix is a crucial issue. In this paper, we propose a consistent affinity representation learning method with dual low-rank constraints for multi-view subspace clustering. To be specific, for capturing the high-order correlations and global consensus among views, we collect the subspace representations of all views into a 3-order tensor, which is imposed with the tensor singular value decomposition (t-SVD) based tensor nuclear norm for achieving the low-rank recovery. Thus, we learn a consistent affinity matrix by fusing multiple subspace representations on the Grassmann manifold rather than handling them in the Euclidean space. In order to enhance the global cluster structure in the uniform subspace, the low-rank constraint is imposed on the consistent affinity matrix. Furthermore, the local geometric structure of the uniform subspace is encoded via graph regularization. The established model can be solved via the alternating direction method of multipliers algorithm (ADMM). Ultimately, the proposed method is experimentally validated to be superior to other state-of-the-art clustering algorithms.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页码:113 / 126
页数:14
相关论文
共 50 条
  • [31] Nonconvex low-rank tensor approximation with graph and consistent regularizations for multi-view subspace learning
    Pan, Baicheng
    Li, Chuandong
    Che, Hangjun
    NEURAL NETWORKS, 2023, 161 : 638 - 658
  • [32] Specific and coupled double consistency multi-view subspace clustering with low-rank tensor learning
    Wu, Tong
    Lu, Gui-Fu
    SIGNAL PROCESSING, 2025, 229
  • [33] Adaptive Weighted Low-Rank Sparse Representation for Multi-View Clustering
    Khan, Mohammad Ahmar
    Khan, Ghufran Ahmad
    Khan, Jalaluddin
    Anwar, Taushif
    Ashraf, Zubair
    Atoum, Ibrahim A. A.
    Ahmad, Naved
    Shahid, Mohammad
    Ishrat, Mohammad
    Alghamdi, Abdulrahman Abdullah
    IEEE ACCESS, 2023, 11 : 60681 - 60692
  • [34] Multi-View Spectral Clustering Tailored Tensor Low-Rank Representation
    Jia, Yuheng
    Liu, Hui
    Hou, Junhui
    Kwong, Sam
    Zhang, Qingfu
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2021, 31 (12) : 4784 - 4797
  • [35] Low-rank tensor multi-view subspace clustering via cooperative regularization
    Guoqing Liu
    Hongwei Ge
    Shuzhi Su
    Shuangxi Wang
    Multimedia Tools and Applications, 2023, 82 : 38141 - 38164
  • [36] Generalized Nonconvex Low-Rank Tensor Approximation for Multi-View Subspace Clustering
    Chen, Yongyong
    Wang, Shuqin
    Peng, Chong
    Hua, Zhongyun
    Zhou, Yicong
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 4022 - 4035
  • [37] Low-rank tensor multi-view subspace clustering via cooperative regularization
    Liu, Guoqing
    Ge, Hongwei
    Su, Shuzhi
    Wang, Shuangxi
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 82 (24) : 38141 - 38164
  • [38] Anchor Graph Based Low-Rank Incomplete Multi-View Subspace Clustering
    Liu, Xiaolan
    Shi, Zongyu
    Ye, Zehui
    Liang, Yong
    Huanan Ligong Daxue Xuebao/Journal of South China University of Technology (Natural Science), 2022, 50 (12): : 60 - 70
  • [39] Low Rank Representation on Product Grassmann Manifolds for Multi-view Subspace Clustering
    Guo, Jipeng
    Sun, Yanfeng
    Gao, Junbin
    Hu, Yongli
    Yin, Baocai
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 907 - 914
  • [40] Consensus Low-Rank Multi-View Subspace Clustering With Cross-View Diversity Preserving
    Kang, Kehan
    Chen, Chenglizhao
    Peng, Chong
    IEEE SIGNAL PROCESSING LETTERS, 2023, 30 : 1512 - 1516