Ni-catalysed WO3 nanostructures grown by electron beam rapid thermal annealing for NO2 gas sensing

被引:16
|
作者
Chandrasekaran, Gopalakrishnan [1 ,2 ]
Sundararaj, Anuraj [2 ]
Therese, Helen Annal [2 ]
Jeganathan, K. [1 ]
机构
[1] Bharathidasan Univ, Sch Phys, Ctr Nanosci & Nanotechnol, Tiruchirappalli 620024, Tamil Nadu, India
[2] SRM Univ, Nanotechnol Res Ctr, Kattankulathur 603203, India
关键词
Nanowires and nanosheet; Physical vapour deposition; Electron beam rapid thermal annealing; Gas sensing; Detection pollutants; TUNGSTEN-OXIDE NANOWIRES; THIN-FILMS; DEPOSITION; RHODIUM;
D O I
10.1007/s11051-015-3100-8
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Ni-catalysed WO3 (Ni-WO3) nanowires and nanosheets were grown on Si (100) substrates using electron beam evaporation followed by electron beam-assisted rapid thermal annealing process. Gas-sensing measurements were performed for various concentrations of NO2 in dry air at a temperature range of 50-400 degrees C. Nanowires and nanosheets show optimum sensor response of 229 and 197 at operating temperatures of 200 and 250 degrees C, respectively, for 100 ppm of NO2 exposure. Nanowires demonstrated a rapid response time of 66 s, but a slow recovery time of 204 s owing to poor rate of desorption of the adsorbed NO2 gas molecules from the internal porous structure of nanowires. In contrast, the recovery time for nanosheet was 126 s due to higher desorption rate of the adhered NO2 molecules associated with low surface area and less porous structure of nanosheet. The gas-sensing mechanism of WO3 nanostructure is discussed briefly.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Enhanced selectivity and ultra-fast detection of NO2 gas sensor via Ag modified WO3 nanostructures for gas sensing applications
    Mathankumar, G.
    Harish, S.
    Mohan, M. Krishna
    Bharathi, P.
    Kannan, S. Kamala
    Archana, J.
    Navaneethan, M.
    SENSORS AND ACTUATORS B-CHEMICAL, 2023, 381
  • [22] PLD-grown WO3 nanostructures with ε-phase for gas sensor applications
    Lappalainen, J.
    Viter, R.
    Puustinen, J.
    Gornostayev, D.
    Smyntyna, V.
    EUROSENSORS XXIV CONFERENCE, 2010, 5 : 343 - 346
  • [23] Characterization of PLD grown WO3 thin films for gas sensing
    Boyadjiev, Stefan I.
    Georgieva, Velichka
    Stefan, Nicolaie
    Stan, George E.
    Mihailescu, Natalia
    Visan, Anita
    Mihailescu, Ion N.
    Besleaga, Cristina
    Szilagyi, Imre M.
    APPLIED SURFACE SCIENCE, 2017, 417 : 218 - 223
  • [24] Preparation of hierarchical WO3 dendrites and their applications in NO2 sensing
    Xiao, Bingxin
    Wang, Dongxue
    Wang, Fei
    Zhao, Qi
    Zhai, Chengbo
    Zhang, Mingzhe
    CERAMICS INTERNATIONAL, 2017, 43 (11) : 8183 - 8189
  • [25] 2-D to 3-D conversion of WO3 nanostructures using structure directing agent for enhanced NO2 gas sensing performance
    Beknalkar, S. A.
    Patil, V. L.
    Harale, N. S.
    Suryawanshi, M. P.
    Patil, A. P.
    Patil, V. B.
    Kim, J. H.
    Patil, P. S.
    SENSORS AND ACTUATORS A-PHYSICAL, 2020, 304
  • [26] Hierarchical flower-like WO3 nanostructures and their gas sensing properties
    Wang, Chong
    Sun, Ruize
    Li, Xin
    Sun, Yanfeng
    Sun, Peng
    Liu, Fengmin
    Lu, Geyu
    SENSORS AND ACTUATORS B-CHEMICAL, 2014, 204 : 224 - 230
  • [27] Hierarchical flower-like WO3 nanostructures and their gas sensing properties
    Sun, Y. (syf@jlu.edu.cn), 1600, Elsevier B.V., Netherlands (204):
  • [28] NO and NO2 Sensing Properties of WO3 and Co3O4 Based Gas Sensors
    Akamatsu, Takafumi
    Itoh, Toshio
    Izu, Noriya
    Shin, Woosuck
    SENSORS, 2013, 13 (09): : 12467 - 12481
  • [29] NO2 gas sensing properties of Pd/WO3 films prepared by glancing angle deposition
    Liu, Hao
    Xu, Yaohua
    Zhang, Xiao
    Zhao, Wenrui
    Ming, Anjie
    Wei, Feng
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2020, 31 (08) : 5827 - 5832
  • [30] Hydrothermal synthesis and gas sensing properties of hexagonal and orthorhombic WO3 nanostructures
    Wei, Shaohong
    Zhao, Junhong
    Hu, Boxiao
    Wu, Kaiqiang
    Du, Weimin
    Zhou, Meihua
    CERAMICS INTERNATIONAL, 2017, 43 (02) : 2579 - 2585