Julia sets in iterative KAM methods for eigenvalue problems

被引:4
|
作者
Govin, M
Jauslin, HR
Cibils, M
机构
[1] Univ Bourgogne, CNRS, Fac Sci Mirande, Phys Lab, F-21011 Dijon, France
[2] Univ Lausanne, Inst Phys Theor, CH-1015 Lausanne, Switzerland
关键词
D O I
10.1016/S0960-0779(97)00187-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present two iterative KAM methods for eigenvalue problems. We discuss their convergence properties for matrices of finite dimension when a perturbation parameter epsilon is varied. We observe different domains separated by Julia sets related to avoided crossings. (C) 1998 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:1835 / 1846
页数:12
相关论文
共 50 条
  • [41] A novel investigation of quaternion Julia and Mandelbrot sets using the viscosity iterative approach
    Adhikari, Nabaraj
    Sintunavarat, Wutiphol
    RESULTS IN CONTROL AND OPTIMIZATION, 2025, 18
  • [42] Multilevel preconditioned iterative eigensolvers for Maxwell eigenvalue problems
    Arbenz, P
    Geus, R
    APPLIED NUMERICAL MATHEMATICS, 2005, 54 (02) : 107 - 121
  • [43] Buried Julia Components and Julia Sets
    Wang, Youming
    Zhan, Guoping
    Liao, Liangwen
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2022, 21 (01)
  • [44] Buried Julia Components and Julia Sets
    Youming Wang
    Guoping Zhan
    Liangwen Liao
    Qualitative Theory of Dynamical Systems, 2022, 21
  • [45] JULIA SETS AS BURIED JULIA COMPONENTS
    Wang, Youming
    Yang, Fei
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 373 (10) : 7287 - 7326
  • [46] Computing eigenvalue bounds for iterative subspace matrix methods
    Zhou, YK
    Shepard, R
    Minkoff, M
    COMPUTER PHYSICS COMMUNICATIONS, 2005, 167 (02) : 90 - 102
  • [47] Convergence of methods for nonlinear eigenvalue problems
    Back, P
    Ringertz, U
    AIAA JOURNAL, 1997, 35 (06) : 1084 - 1087
  • [48] Convergence proof of the Harmonic Ritz pairs of iterative projection methods with restart strategies for symmetric eigenvalue problems
    Kensuke Aishima
    Japan Journal of Industrial and Applied Mathematics, 2020, 37 : 415 - 431
  • [49] Finite Volume Methods for Eigenvalue Problems
    Shengde Liang
    Xiuling Ma
    Aihui Zhou
    BIT Numerical Mathematics, 2001, 41 : 345 - 363
  • [50] Numerical methods for eigenvalue and control problems
    Mehrmann, V
    FRONTIERS IN NUMERICAL ANALYSIS, 2003, : 303 - 349