Material properties and mechanical behaviour of functionally graded steel produced by wire-arc additive manufacturing

被引:5
|
作者
Tenuta, E. [1 ]
Nycz, A. [2 ]
Noakes, M. [2 ]
Simunovic, S. [3 ]
Piro, M. H. A. [4 ]
机构
[1] Ontario Tech Univ, Fac Sci, Oshawa, ON, Canada
[2] Oak Ridge Natl Lab, Mfg Sci Div, Oak Ridge, TN USA
[3] Oak Ridge Natl Lab, Computat Sci & Engn Div, Oak Ridge, TN USA
[4] Ontario Tech Univ, Fac Energy Syst & Nucl Sci, Oshawa, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Additive manufacturing; Interface; Microscopy; Microstructure; Stainless steel; Mild steel; Print strategy; MICROSTRUCTURE; MODEL; STRENGTH;
D O I
10.1016/j.addma.2021.102175
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Metal Big Area Additive Manufacturing is an additive manufacturing technique based on Gas Metal Arc Welding (GMAW) with the option to use many shielding gases, and materials. The system is equipped with a dual torch design allowing for printing different materials; in our study, AISI 410 stainless steel and AWS ER70S-6 mild steel are both printed in the same component. Different print strategies were designed to highlight changes in material and mechanical properties. Deformation behaviour of a materials' interface was analysed by twodimensional digital image correlation of uniaxial tensile specimens in displacement-controlled tests. Instances of non-homogeneous local strains adjacent to the interface are observed, as well as variability in mechanical behaviour and microstructure based on location within the print. Optical and electron microscopy are used to evaluate three microstructural zones in a 5 mm range of the interface between mild steel and stainless steel. Areas far from the interface produced polygonal ferrite and pearlite, while areas close to the interface produced acicular ferrite and bainite. Chromium redistribution profiles are dependent on the print strategy used, as shown by scanning electron microscopy with Energy dispersive spectroscopy. Evidence produced via electron backscatter diffraction is shown to support the argument that transformation induced plasticity is not the cause for the non-homogeneous deformation.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Wire arc additive manufacturing of functionally graded material with SS 316L and IN625: Microstructural and mechanical perspectives
    Sasikumar, R.
    Kannan, A. Rajesh
    Kumar, S. Mohan
    Pramod, R.
    Kumar, N. Pravin
    Shanmugam, N. Siva
    Palguna, Yasam
    Sivankalai, Sakthivel
    CIRP JOURNAL OF MANUFACTURING SCIENCE AND TECHNOLOGY, 2022, 38 : 230 - 242
  • [32] Dynamic mechanical properties and strengthening mechanism of Co-free maraging steel manufactured by wire-arc additive manufacturing
    Cheng, Jingjing
    Zhang, Tianyang
    Xu, Cheng
    Chen, Zhenwen
    Zhang, Xiaoyong
    Peng, Yong
    Wang, Kehong
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2025, 926
  • [33] Monotonic and Fatigue Properties of Steel Material Manufactured by Wire Arc Additive Manufacturing
    Waechter, Michael
    Leicher, Marcel
    Hupka, Moritz
    Leistner, Chris
    Masendorf, Lukas
    Treutler, Kai
    Kamper, Swenja
    Esderts, Alfons
    Wesling, Volker
    Hartmann, Stefan
    APPLIED SCIENCES-BASEL, 2020, 10 (15):
  • [34] Microstructure and mechanical properties of a functionally graded material from TA1 to Inconel 625 fabricated by dual wire plus arc additive manufacturing
    Lu, Lianzhong
    Tian, Yinbao
    Cai, Yangchuan
    Xin, Yi
    Chen, Xinya
    Zhang, Guoyang
    Han, Jian
    MATERIALS LETTERS, 2021, 298
  • [35] A comprehensive review of wire arc additive manufacturing for metallic functionally graded materials
    Dhanola, Anil
    Prasad, Daya Shankar
    ENGINEERING RESEARCH EXPRESS, 2024, 6 (04):
  • [36] FUNCTIONALLY GRADED MATERIAL BY ADDITIVE MANUFACTURING
    Choy, S. Y.
    Sun, C. N.
    Leong, K. F.
    Tan, K. E.
    Wei, J.
    PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON PROGRESS IN ADDITIVE MANUFACTURING (PRO-AM 2016), 2016, : 206 - 211
  • [37] A functionally graded material from stainless steel 304 to Fe-40Al fabricated by dual wire arc additive manufacturing
    Zhang, Weichen
    Wang, Jian
    Zhu, Xiaolei
    Lu, Xiaofeng
    Ling, Xiang
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 28 : 3566 - 3572
  • [38] In-situ heat treatment (IHT) wire arc additive manufacturing of Inconel625-HSLA steel functionally graded material
    Zhang, Jiarong
    Li, Chengning
    Yang, Xiaocong
    Wang, Dongpo
    Hu, Wenbin
    Di, Xinjie
    Zhang, Jianjun
    MATERIALS LETTERS, 2023, 330
  • [39] Characterization of wire arc additively manufactured titanium aluminide functionally graded material: Microstructure, mechanical properties and oxidation behaviour
    Wang, Jun
    Pan, Zengxi
    Ma, Yan
    Lu, Yao
    Shen, Chen
    Cuiuri, Dominic
    Li, Huijun
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2018, 734 : 110 - 119
  • [40] Fabrication of functionally graded material via gas tungsten arc welding based wire feeding additive manufacturing: Mechanical and microstructural characterization
    Veeman, Dhinakaran
    Alruqi, Mansoor
    Subramaniyan, Mohan Kumar
    Nallathambhi, Siva Shanmugam
    Browne, Micheal Agnelo
    Kamaraj, Ashok
    MATERIALS LETTERS, 2022, 324