Extrapolation of the bilinear element approximation for the Poisson equation on anisotropic meshes

被引:5
|
作者
Lin, Qun [1 ]
Lin, Jia-Fu
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, ICMSEC, LSEC, Beijing 100080, Peoples R China
[2] Beijing Inst Technol, Dept Appl Math, Beijing 100081, Peoples R China
关键词
bilinear element; extrapolation; anisotropic;
D O I
10.1002/num.20202
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The bilinear finite element approximation for the Poisson equation has an asymptotic error expansion on the anisotropic rectangular meshes. Extrapolation can be obtained based on this expansion and the postprocessing interpolation. (c) 2007 Wiley Periodicals, Inc.
引用
收藏
页码:960 / 967
页数:8
相关论文
共 50 条
  • [21] Superconvergence analysis of Wilson element on anisotropic meshes
    Shi Dong-yang
    Liang Hui
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2007, 28 (01) : 119 - 125
  • [22] An efficient sixth-order solution for anisotropic Poisson equation with completed Richardson extrapolation and multiscale multigrid method
    Dai, Ruxin
    Lin, Pengpeng
    Zhang, Jun
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 73 (08) : 1865 - 1877
  • [23] Numerical approximation of bilinear control of the Schroedinger equation
    Kime, Katherine A.
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, VOL 6, PTS A-C, 2005, : 623 - 626
  • [24] Weak Galerkin finite element method for Poisson's equation on polytopal meshes with small edges or faces
    Guan, Qingguang
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 368
  • [25] Finite Element Approximation to a Finite-Size Modified Poisson-Boltzmann Equation
    Chaudhry, Jehanzeb Hameed
    Bond, Stephen D.
    Olson, Luke N.
    JOURNAL OF SCIENTIFIC COMPUTING, 2011, 47 (03) : 347 - 364
  • [26] Improved bicubic finite-element approximation of the Neumann problem for Poisson’s equation
    B. V. Pal’tsev
    A. V. Stavtsev
    I. I. Chechel’
    Doklady Mathematics, 2008, 77 : 258 - 264
  • [27] Finite Element Approximation to a Finite-Size Modified Poisson-Boltzmann Equation
    Jehanzeb Hameed Chaudhry
    Stephen D. Bond
    Luke N. Olson
    Journal of Scientific Computing, 2011, 47 : 347 - 364
  • [28] Improved bicubic finite-element approximation of the Neumann problem for Poisson's equation
    Pal'tsev, B. V.
    Stavtsev, A. V.
    Chechel, I. I.
    DOKLADY MATHEMATICS, 2008, 77 (02) : 258 - 264
  • [29] Error estimates for rotated Q1rot element approximation of the eigenvalue problem on anisotropic meshes
    Shi, Dongyang
    Peng, Yucheng
    Chen, Shaochun
    APPLIED MATHEMATICS LETTERS, 2009, 22 (06) : 952 - 959
  • [30] On the Poisson equation and diffusion approximation 3
    Pardoux, E
    Veretennikov, AY
    ANNALS OF PROBABILITY, 2005, 33 (03): : 1111 - 1133