Khovanov homology and causality in spacetimes

被引:2
|
作者
Chernov, V. [1 ]
Martin, G. [2 ]
Petkova, I. [1 ]
机构
[1] Dartmouth Coll, Math Dept, Hanover, NH 03755 USA
[2] Boston Coll, Dept Math, Chestnut Hill, MA 02467 USA
关键词
CAUCHY HYPERSURFACES; LEGENDRIAN ISOTOPY; TWISTOR LINKING;
D O I
10.1063/5.0002297
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We observe that Khovanov homology detects causality in (2 + 1)-dimensional globally hyperbolic spacetimes whose Cauchy surface is homeomorphic to R-2. Published under license by AIP Publishing.
引用
收藏
页数:3
相关论文
共 50 条
  • [31] AN ORIENTED MODEL FOR KHOVANOV HOMOLOGY
    Blanchet, Christian
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2010, 19 (02) : 291 - 312
  • [32] Khovanov homology for signed divides
    Couture, Olivier
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2009, 9 (04): : 1987 - 2026
  • [33] Search for Torsion in Khovanov Homology
    Mukherjee, Sujoy
    Przytycki, Jozef H.
    Silvero, Marithania
    Wang, Xiao
    Yang, Seung Yeop
    EXPERIMENTAL MATHEMATICS, 2018, 27 (04) : 488 - 497
  • [34] Khovanov Homology and Periodic Links
    Borodzik, Maciej
    Politarczyk, Wojciech
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2021, 70 (01) : 235 - 267
  • [35] Equivariant annular Khovanov homology
    Akhmechet, Rostislav
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2023, 32 (02)
  • [36] SPANNING TREES AND KHOVANOV HOMOLOGY
    Champanerkar, Abhijit
    Kofman, Ilya
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 137 (06) : 2157 - 2167
  • [37] On bordered theories for Khovanov homology
    Manion, Andrew
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2017, 17 (03): : 1557 - 1674
  • [38] Khovanov homology for alternating tangles
    Bar-Natan, Dror
    Burgos-Soto, Hernando
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2014, 23 (02)
  • [39] Khovanov homology and the slice genus
    Jacob Rasmussen
    Inventiones mathematicae, 2010, 182 : 419 - 447
  • [40] Khovanov homology: torsion and thickness
    Asaeda, MM
    Przytycki, JH
    Advances in Topological Quantum Field Theory, 2004, 179 : 135 - 166