Comparison of spatial interpolation methods in the first order stationary multiplicative spatial autoregressive models

被引:4
|
作者
Saber, M. M. [1 ]
Nematollahi, A. R. [1 ]
机构
[1] Shiraz Univ, Dept Stat, Shiraz, Iran
关键词
MSAR model; Multivariate asymmetric Laplace; Pitman's measure of closeness; MCMC; REGRESSION-MODELS;
D O I
10.1080/03610926.2016.1205619
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Three linear prediction methods of a single missing value for a stationary first order multiplicative spatial autoregressive model are proposed based on the quarter observations, observations in the first neighborhood, and observations in the nearest neighborhood. Three different types of innovations including Gaussian (symmetric and thin tailed), exponential (skew to right), and asymmetric Laplace (skew and heavy tailed) are considered. In each case, the proposed predictors are compared based on the two well-known criteria: mean square prediction and Pitman's measure of closeness. Parameter estimation is performed by maximum likelihood, least square errors, and Markov chain Monte Carlo (MCMC).
引用
收藏
页码:9230 / 9246
页数:17
相关论文
共 50 条
  • [31] Comparison of spatial interpolation methods for estimating the precipitation distribution in Portugal
    Antal, Alexandru
    Guerreiro, Pedro M. P.
    Cheval, Sorin
    THEORETICAL AND APPLIED CLIMATOLOGY, 2021, 145 (3-4) : 1193 - 1206
  • [32] Comparison of spatial interpolation methods for the estimation of air quality data
    David W Wong
    Lester Yuan
    Susan A Perlin
    Journal of Exposure Science & Environmental Epidemiology, 2004, 14 : 404 - 415
  • [33] Comparison of spatial interpolation methods for the estimation of air quality data
    Wong, DW
    Yuan, L
    Perlin, SA
    JOURNAL OF EXPOSURE ANALYSIS AND ENVIRONMENTAL EPIDEMIOLOGY, 2004, 14 (05): : 404 - 415
  • [34] Comparison of methods for spatial interpolation of fire weather in Alberta, Canada
    Jain, P.
    Flannigan, M. D.
    CANADIAN JOURNAL OF FOREST RESEARCH, 2017, 47 (12) : 1646 - 1658
  • [35] On unit roots for spatial autoregressive models
    Paulauskas, Vygantas
    JOURNAL OF MULTIVARIATE ANALYSIS, 2007, 98 (01) : 209 - 226
  • [36] GMM inference in spatial autoregressive models
    Taspinar, Suleyman
    Dogan, Osman
    Vijverberg, Wim P. M.
    ECONOMETRIC REVIEWS, 2018, 37 (09) : 931 - 954
  • [37] Bayesian estimation of spatial autoregressive models
    LeSage, JP
    INTERNATIONAL REGIONAL SCIENCE REVIEW, 1997, 20 (1-2) : 113 - 129
  • [38] Simultaneous autoregressive models for spatial extremes
    Fix, Miranda J.
    Cooley, Daniel S.
    Thibaud, Emeric
    ENVIRONMETRICS, 2021, 32 (02)
  • [39] Variable selection for spatial autoregressive models
    Xie, Li
    Wang, Xiaorui
    Cheng, Weihu
    Tang, Tian
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2021, 50 (06) : 1325 - 1340
  • [40] Spatial autocorrelation and autoregressive models in ecology
    Lichstein, JW
    Simons, TR
    Shriner, SA
    Franzreb, KE
    ECOLOGICAL MONOGRAPHS, 2002, 72 (03) : 445 - 463