On q-Euler Numbers Related to the Modified q-Bernstein Polynomials

被引:1
|
作者
Kim, Min-Soo [2 ]
Kim, Daeyeoul [3 ]
Kim, Taekyun [1 ]
机构
[1] Kwangwoon Univ, Div Gen Educ Math, Seoul 139701, South Korea
[2] Korea Adv Inst Sci & Technol, Dept Math, Taejon 305701, South Korea
[3] Natl Inst Math Sci, Taejon 305340, South Korea
关键词
Q-ANALOG;
D O I
10.1155/2010/952384
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider q-Euler numbers, polynomials, and q-Stirling numbers of first and second kinds. Finally, we investigate some interesting properties of the modified q-Bernstein polynomials related to q-Euler numbers and q-Stirling numbers by using fermionic p-adic integrals on Z(p).
引用
收藏
页数:15
相关论文
共 50 条
  • [21] THE DEFORMED DEGENERATE q-EULER POLYNOMIALS AND NUMBERS
    Choi, Sangki
    Kim, Byung-Moon
    Kwon, Jongkyum
    ARS COMBINATORIA, 2019, 143 : 309 - 319
  • [22] New Approach to q-Euler Numbers and Polynomials
    Kim, Taekyun
    Jang, Lee-Chae
    Kim, Young-Hee
    Rim, Seog-Hoon
    ADVANCES IN DIFFERENCE EQUATIONS, 2010,
  • [23] A New Approach to q-Bernoulli Numbers and q-Bernoulli Polynomials Related to q-Bernstein Polynomials
    Acikgoz, Mehmet
    Erdal, Dilek
    Araci, Serkan
    ADVANCES IN DIFFERENCE EQUATIONS, 2010,
  • [24] On the q-Euler Numbers and Polynomials with Weight 0
    Kim, T.
    Choi, J.
    ABSTRACT AND APPLIED ANALYSIS, 2012,
  • [25] Analytic continuation of q-Euler numbers and polynomials
    Kim, Taekyun
    APPLIED MATHEMATICS LETTERS, 2008, 21 (12) : 1320 - 1323
  • [26] Some Properties on the q-Euler Numbers and Polynomials
    Kim, T.
    Lee, S. -H.
    ABSTRACT AND APPLIED ANALYSIS, 2012,
  • [27] Some Relations between Twisted (h, q)-Euler Numbers with Weight α and q-Bernstein Polynomials with Weight α
    Jung, N. S.
    Lee, H. Y.
    Ryoo, C. S.
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2011, 2011
  • [28] Identities involving values of Bernstein, q-Bernoulli, and q-Euler polynomials
    Bayad, A.
    Kim, T.
    RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2011, 18 (02) : 133 - 143
  • [29] Quadratic symmetry of modified q-Euler polynomials
    SangKi Choi
    Taekyun Kim
    Hyuck-In Kwon
    Jongkyum Kwon
    Advances in Difference Equations, 2018
  • [30] A new extension of q-Euler numbers and polynomials related to their interpolation functions
    Ozden, Hacer
    Simsek, Yilmaz
    APPLIED MATHEMATICS LETTERS, 2008, 21 (09) : 934 - 939