Real-World, Real-Time Robotic Grasping with Convolutional Neural Networks

被引:24
|
作者
Watson, Joe [1 ]
Hughes, Josie [1 ]
Iida, Fumiya [1 ]
机构
[1] Univ Cambridge, Dept Engn, Bioinspired Robot Lab, Cambridge, England
关键词
Grasping; Deep learning; Convolution Neural Networks; Manipulation;
D O I
10.1007/978-3-319-64107-2_50
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Adapting to uncertain environments is a key obstacle in the development of robust robotic object manipulation systems, as there is a trade-off between the computationally expensive methods of handling the surrounding complexity, and the real-time requirement for practical operation. We investigate the use of Deep Learning to develop a real-time scheme on a physical robot. Using a Baxter Research Robot and Kinect sensor, a convolutional neural network (CNN) was trained in a supervised manner to regress grasping coordinates from RGB-D data. Compared to existing methods, regression via deep learning offered an efficient process that learnt generalised grasping features and processed the scene in real-time. The system achieved a successful grasp rate of 62% and a successful detection rate of 78% on a diverse set of physical objects across varying position and orientation, executing grasp detection in 1.8 s on a CPU machine and a complete physical grasp and move in 60 s on the robot.
引用
收藏
页码:617 / 626
页数:10
相关论文
共 50 条
  • [1] Real-Time Hair Filtering with Convolutional Neural Networks
    Currius, Roc R.
    Assarsson, Ulf
    Sintorn, Erik
    PROCEEDINGS OF THE ACM ON COMPUTER GRAPHICS AND INTERACTIVE TECHNIQUES, 2022, 5 (01)
  • [2] Neural networks for the real-world
    Fraser, D.D.
    Elektron, 1996, 13 (05):
  • [3] Robotic Arm Handling Based on Real-time Gender Recognition Using Convolutional Neural Networks
    Miranda, Leonel
    Jimenez, Daniel
    Benitez, Diego
    Perez, Noel
    Riofrio, Daniel
    Flores Moyano, Ricardo
    2022 IEEE INTERNATIONAL AUTUMN MEETING ON POWER, ELECTRONICS AND COMPUTING (ROPEC), 2022,
  • [4] Improving Deep Convolutional Neural Networks for Real-world Clothing Image
    Li, Ruifan
    Mao, Yuzhao
    Ahmad, Ibrar
    Feng, Fangxiang
    Wang, Xiaojie
    2017 13TH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY (ICNC-FSKD), 2017, : 837 - 843
  • [5] Fast Convolutional Neural Network for Real-Time Robotic Grasp Detection
    Ribeiro, Eduardo G.
    Grassi Jr, Valdir
    2019 19TH INTERNATIONAL CONFERENCE ON ADVANCED ROBOTICS (ICAR), 2019, : 49 - 54
  • [6] Learning robust, real-time, reactive robotic grasping
    Morrison, Douglas
    Corke, Peter
    Leitner, Jurgen
    INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2020, 39 (2-3): : 183 - 201
  • [7] Convolutional neural networks for real-time epileptic seizure detection
    Achilles, Felix
    Tombari, Federico
    Belagiannis, Vasileios
    Loesch, Anna Mira
    Noachtar, Soheyl
    Navab, Nassir
    COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING-IMAGING AND VISUALIZATION, 2018, 6 (03): : 264 - 269
  • [8] Convolutional Neural Networks for Real-Time and Wireless Damage Detection
    Avci, Onur
    Abdeljaber, Osama
    Kiranyaz, Serkan
    Inman, Daniel
    DYNAMICS OF CIVIL STRUCTURES, VOL 2, IMAC 2019, 2020, : 129 - 136
  • [9] Convolutional and Recurrent Neural Networks for Real-time Data Classification
    Abroyan, Narek
    2017 SEVENTH INTERNATIONAL CONFERENCE ON INNOVATIVE COMPUTING TECHNOLOGY (INTECH 2017), 2017, : 42 - 45
  • [10] Real-time arrhythmia detection using convolutional neural networks
    Vu, Thong
    Petty, Tyler
    Yakut, Kemal
    Usman, Muhammad
    Xue, Wei
    Haas, Francis M.
    Hirsh, Robert A.
    Zhao, Xinghui
    FRONTIERS IN BIG DATA, 2023, 6