Projective properties of fractal sets

被引:1
|
作者
Nilsson, Anders
Georgsson, Fredrik [1 ]
机构
[1] Umea Univ, Dept Math & Math Stat, S-90187 Umea, Sweden
[2] Umea Univ, Dept Comp Sci, S-90187 Umea, Sweden
关键词
D O I
10.1016/j.chaos.2006.05.091
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, it is shown that a bound on the box dimension of a set in 3D can be established by estimating the box dimension of the discrete image of the projected set i.e. from an image in 2D. It is possible to impose limits on the Hausdorff dimension of the set by estimating the box dimension of the projected set. Furthermore, it is shown how a realistic X-ray projection can be viewed as equivalent to an ideal projection when regarding estimates of fractal dimensions. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:786 / 794
页数:9
相关论文
共 50 条
  • [31] FINITE PROJECTIVE ORDERED SETS
    LAROSE, B
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 1991, 8 (01): : 33 - 40
  • [32] Large cardinals and projective sets
    Haim Judah
    Otmar Spinas
    Archive for Mathematical Logic, 1997, 36 : 137 - 155
  • [33] BARRIERS ON PROJECTIVE CONVEX SETS
    Hildebrad, Roland
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2011, 31 : 672 - 683
  • [34] On linear sets on a projective line
    M. Lavrauw
    G. Van de Voorde
    Designs, Codes and Cryptography, 2010, 56 : 89 - 104
  • [35] Commentary on projective sets.
    Lusin, N
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES, 1927, 185 : 835 - 837
  • [36] PROJECTIVE COMPACT CONVEX SETS
    WICKSTEAD, AW
    QUARTERLY JOURNAL OF MATHEMATICS, 1973, 24 (95): : 301 - 306
  • [37] ABSORBING SETS FOR PROJECTIVE CLASSES
    CAUTY, R
    FUNDAMENTA MATHEMATICAE, 1993, 143 (03) : 203 - 206
  • [38] On defining sets for projective planes
    Boros, E
    Szonyi, T
    Tichler, K
    DISCRETE MATHEMATICS, 2005, 303 (1-3) : 17 - 31
  • [39] Projective sets with no trisecant lines
    Cossidente, Antonio
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2025,
  • [40] Projective G-sets
    Lizasoain, I
    Ochoa, G
    JOURNAL OF PURE AND APPLIED ALGEBRA, 1998, 126 (1-3) : 287 - 296