Numerical Continuation of Resonances and Bound States in Coupled Channel Schrodinger Equations

被引:1
|
作者
Klosiewicz, Przemyslaw [1 ]
Broeckhove, Jan [1 ]
Vanroose, Wim [1 ]
机构
[1] Univ Antwerp, Dept Math & Comp Sci, B-2020 Antwerp, Belgium
关键词
Resonances; numerical continuation; coupled channels; Schrodinger equation; EIGENVALUE PROBLEM;
D O I
10.4208/cicp.121209.050111s
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this contribution, we introduce numerical continuation methods and bifurcation theory, techniques which find their roots in the study of dynamical systems, to the problem of tracing the parameter dependence of bound and resonant states of the quantum mechanical Schrodinger equation. We extend previous work on the subject [1] to systems of coupled equations. Bound and resonant states of the Schrodinger equation can be determined through the poles of the S-matrix, a quantity that can be derived from the asymptotic form of the wave function. We introduce a regularization procedure that essentially transforms the S-matrix into its inverse and improves its smoothness properties, thus making it amenable to numerical continuation. This allows us to automate the process of tracking bound and resonant states when parameters in the Schrodinger equation are varied. We have applied this approach to a number of model problems with satisfying results.
引用
收藏
页码:435 / 455
页数:21
相关论文
共 50 条
  • [21] NOTE ON NUMERICAL SOLUTION OF SCHRODINGER EQUATION FOR BOUND STATES
    VIANA, JDM
    WATANABE, S
    ANAIS DA ACADEMIA BRASILEIRA DE CIENCIAS, 1968, 40 (02): : 119 - &
  • [22] Numerical approximation of solution for the coupled nonlinear Schrodinger equations
    Chen, Juan
    Zhang, Lu-ming
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2017, 33 (02): : 435 - 450
  • [23] New numerical methods for the coupled nonlinear Schrodinger equations
    Xu, Qiu-bin
    Chang, Qian-shun
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2010, 26 (02): : 205 - 218
  • [24] Vector-soliton bound states for the coupled mixed derivative nonlinear Schrodinger equations in optical fibers
    Li, Min
    Xiao, Jing-Hua
    Qin, Bo
    Wang, Ming
    Tian, Bo
    WAVE MOTION, 2013, 50 (01) : 1 - 10
  • [25] On the existence of bound and ground states for some coupled nonlinear Schrodinger-Korteweg-de Vries equations
    Colorado, Eduardo
    ADVANCES IN NONLINEAR ANALYSIS, 2017, 6 (04) : 407 - 426
  • [26] Numerical study of nonlinear Schrodinger and coupled Schrodinger equations by differential transformation method
    Borhanifar, A.
    Abazari, Reza
    OPTICS COMMUNICATIONS, 2010, 283 (10) : 2026 - 2031
  • [27] BOUND STATES OF SCHRODINGER EQUATIONS WITH ELECTROMAGNETIC FIELDS AND VANISHING POTENTIALS
    Ba, Na
    Dai, Jinjun
    ACTA MATHEMATICA SCIENTIA, 2017, 37 (02) : 405 - 424
  • [28] NODAL BOUND STATES WITH CLUSTERED SPIKES FOR NONLINEAR SCHRODINGER EQUATIONS
    Dai, Jinjun
    He, Qihan
    Li, Biwen
    ACTA MATHEMATICA SCIENTIA, 2014, 34 (06) : 1892 - 1906
  • [29] Multi-peak bound states for nonlinear Schrodinger equations
    Departamento de Matematicas, Fac. de Ciencias, Universidad de Chile, Casilla 653, Santiago I, Chile
    不详
    Annales de l'Institut Henri Poincare. Annales: Analyse Non Lineaire/Nonlinear Analysis, 15 (02): : 127 - 149
  • [30] Bound states of nonlinear Schrodinger equations with potentials vanishing at infinity
    Ambrosetti, A.
    Malchiodi, A.
    Ruiz, D.
    JOURNAL D ANALYSE MATHEMATIQUE, 2006, 98 (1): : 317 - 348