Numerical Continuation of Resonances and Bound States in Coupled Channel Schrodinger Equations

被引:1
|
作者
Klosiewicz, Przemyslaw [1 ]
Broeckhove, Jan [1 ]
Vanroose, Wim [1 ]
机构
[1] Univ Antwerp, Dept Math & Comp Sci, B-2020 Antwerp, Belgium
关键词
Resonances; numerical continuation; coupled channels; Schrodinger equation; EIGENVALUE PROBLEM;
D O I
10.4208/cicp.121209.050111s
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this contribution, we introduce numerical continuation methods and bifurcation theory, techniques which find their roots in the study of dynamical systems, to the problem of tracing the parameter dependence of bound and resonant states of the quantum mechanical Schrodinger equation. We extend previous work on the subject [1] to systems of coupled equations. Bound and resonant states of the Schrodinger equation can be determined through the poles of the S-matrix, a quantity that can be derived from the asymptotic form of the wave function. We introduce a regularization procedure that essentially transforms the S-matrix into its inverse and improves its smoothness properties, thus making it amenable to numerical continuation. This allows us to automate the process of tracking bound and resonant states when parameters in the Schrodinger equation are varied. We have applied this approach to a number of model problems with satisfying results.
引用
收藏
页码:435 / 455
页数:21
相关论文
共 50 条