Estimating bubble interfacial heat transfer coefficient in pool boiling

被引:8
|
作者
Mobli, Mostafa [1 ]
Bayat, Mahmoud [1 ]
Li, Chen [1 ]
机构
[1] Univ South Carolina, Dept Mech Nucl & Aerosp Engn, Columbia, SC 29208 USA
基金
美国国家科学基金会;
关键词
Pool boiling; Evaporation; Interfacial Heat Transfer Coefficient; Volume of Fluid; Accommodation Coefficient; Level Set; OF-FLUID METHOD; LEVEL SET; NUMERICAL-SIMULATION; SURFACE-TENSION; TRACKING METHOD; FORCE ANALYSIS; SINGLE BUBBLE; 2-PHASE FLOW; VOLUME; DYNAMICS;
D O I
10.1016/j.molliq.2022.118541
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Interfacial heat transfer coefficient (IHTC) is one the most deterministic factors of nucleate boiling characteristics in pool boiling. IHTC and bubble dynamics have a reciprocal effect on each other, which makes accurate estimations of IHTC even more challenging, but important for nucleate boiling studies. In this study, by considering interfacial heat resistance, micro-layer heat transfer and conjugate heat transfer, a comprehensive model that is capable of simulating phase change phenomena and IHTC has been developed and a modified form of Volume of Fluid method (VOF) is used to simulate pool boiling phenomena. In this study, three major challenges in simulating bubble dynamics and related phase change heat transfer using a VOF method have been successfully addressed to achieve more accurate simulations. First, spurious currents resulting from approximating curvature in VOF and interface diffusion have been minimized by introducing curvature smoothing and employing a simplified coupled level set volume of fluid method (S-CLSVOF). Second, simulation instability due to the concentration of source terms on the interface has been addressed by smearing source terms around the interface. Third, micro-layer thickness, which is noticeably smaller than computational cells, has been calculated based on a linear depletable micro-layer method. Effects of three-phase contact line were adopted by introducing a dynamic contact angle model and temperature variation inside the heater. The model shows great agreement with available experimental and numerical results in nucleate boiling of water and R113 in terms of bubble growth and departure rate, frequency and temperature distribution, and micro-layer thickness. The new model developed in this study simulates IHTC in two water cases and its relationship to interfacial relative velocity. (C) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Pool Boiling Heat Transfer and Bubble Dynamics Over Plain and Enhanced Microchannels
    Cooke, Dwight
    Kandlikar, Satish G.
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2011, 133 (05):
  • [42] Bubble dynamics and nucleate pool boiling heat transfer on microporous copper surfaces
    Thiagarajan, Suraj Joottu
    Yang, Ronggui
    King, Charles
    Narumanchi, Sreekant
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2015, 89 : 1297 - 1315
  • [43] POOL BOILING HEAT TRANSFER AND BUBBLE DYNAMICS OVER PLAIN AND ENHANCED MICROCHANNELS
    Cooke, Dwight
    Kandlikar, Satish G.
    PROCEEDINGS OF THE 8TH INTERNATIONAL CONFERENCE ON NANOCHANNELS, MICROCHANNELS AND MINICHANNELS, 2010, PTS A AND B, 2011, : 163 - 172
  • [44] Bubble Behavior and Heat Transfer in Quasi-Steady Pool Boiling in Microgravity
    Zhao, Jian-Fu
    Li, Jing
    Yan, Na
    Wang, Shuang-Feng
    MICROGRAVITY SCIENCE AND TECHNOLOGY, 2009, 21 : 175 - 183
  • [45] Bubble Behavior and Heat Transfer in Quasi-Steady Pool Boiling in Microgravity
    Jian-Fu Zhao
    Jing Li
    Na Yan
    Shuang-Feng Wang
    Microgravity Science and Technology, 2009, 21 : 175 - 183
  • [46] Bubble Dynamics and Heat Transfer During Pool Boiling on Wettability Patterned Surfaces
    Sun, Zhen
    Chen, Xiaodan
    Qiu, Huihe
    HEAT TRANSFER ENGINEERING, 2018, 39 (7-8) : 663 - 671
  • [47] Interfacial Heat Transfer of Condensation Bubble with Consideration of Bubble Number Distribution in Subcooled Flow Boiling
    Inaba, Noriaki
    Watanabe, Noriyuki
    Aritomi, Masanori
    JOURNAL OF THERMAL SCIENCE AND TECHNOLOGY, 2013, 8 (01): : 74 - 90
  • [48] Enhancement of nucleate pool boiling heat transfer coefficient by reentrant cavity surfaces
    K. G. Rajulu
    Ravi Kumar
    Bikash Mohanty
    H. K. Varma
    Heat and Mass Transfer, 2004, 41 : 127 - 132
  • [49] Augmentation of heat transfer coefficient in pool boiling using compound enhancement techniques
    Sathyabhama, A.
    Dinesh, Athul
    APPLIED THERMAL ENGINEERING, 2017, 119 : 176 - 188
  • [50] Investigation of Effects of Heater Tube Angle on the Pool Boiling Heat Transfer Coefficient
    Khooshehchin, Mohsen
    Fathi, Sohrab
    Salimi, Farhad
    Ovaysi, Saeed
    IRANIAN JOURNAL OF CHEMISTRY & CHEMICAL ENGINEERING-INTERNATIONAL ENGLISH EDITION, 2022, 41 (03): : 957 - 970