A Triboelectric Nanogenerator Based on Sodium Chloride Powder for Self-Powered Humidity Sensor

被引:19
|
作者
Ding, Zhuyu [1 ]
Zou, Ming [2 ]
Yao, Peng [2 ]
Zhu, Zhiyuan [2 ,3 ]
Fan, Li [2 ]
机构
[1] Southwest Univ, Coll Engn & Technol, Chongqing 400715, Peoples R China
[2] Southwest Univ, Sch Elect & Informat Engn, Chongqing 400715, Peoples R China
[3] Zhejiang Univ, Fac Engn, Ocean Coll, Hangzhou 316021, Peoples R China
基金
中国国家自然科学基金;
关键词
triboelectric nanogenerator (TENG); sodium chloride powder; self-powered sensor; low-cost; ENERGY-CONVERSION; DRIVEN;
D O I
10.3390/nano11102657
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Recently, the research of distributed sensor networks based on triboelectric technology has attracted extensive attention. Here, we reported a new triboelectric nanogenerator based on sodium chloride powder (S-TENG) to obtain mechanical energy. The polytetrafluoroethylene (PTFE) film and sodium chloride powder layer serve as the triboelectric pair. After testing and calculation, the internal resistance of S-TENG is 30 M omega, and the output power of S-TENG (size: 6 cm x 6 cm) can arrive at the maximum value (about 403.3 mu W). Furthermore, the S-TENG can achieve the open circuit voltage (V-oc) of 198 V and short-circuit current (I-sc) of 6.66 mu A, respectively. Moreover, owing to the moisture absorption of sodium chloride powder, the S-TENG device also has the function of the humidity sensor. This work proposed a functional TENG device, and it can promote the advancement of self-powered sensors based on the TENG devices.</p>
引用
收藏
页数:9
相关论文
共 50 条
  • [21] A triboelectric nanogenerator as self-powered temperature sensor based on PVDF and PTFE
    Xia, Kequan
    Zhu, Zhiyuan
    Zhang, Hongze
    Xu, Zhiwei
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2018, 124 (08):
  • [22] Self-Powered Pedometer Based on Triboelectric Nanogenerator
    Liu, Yan
    Ouyang, Han
    Liu, Zhuo
    Zou, Yang
    Zhao, Lu-Ming
    Tian, Jing-Jing
    Li, Ming
    Jiang, Wen
    Li, Zhou
    Dianzi Keji Daxue Xuebao/Journal of the University of Electronic Science and Technology of China, 2017, 46 (05): : 790 - 794
  • [23] A Self-Powered Multifunctional Sensor for Downhole Motor Based on Triboelectric Nanogenerator
    Xu, Jie
    Wang, Yu
    Kong, Lingrong
    Wu, Chuan
    Su, Shida
    Rong, Heqi
    IEEE SENSORS JOURNAL, 2023, 23 (08) : 8252 - 8260
  • [24] Self-Powered Sensor Based on Triboelectric Nanogenerator for Landslide Displacement Measurement
    Chen, Jinguo
    Zou, Hao
    Pan, Guangzhi
    Mao, Shuai
    Chen, Bing
    Wu, Chuan
    JOURNAL OF SENSORS, 2024, 2024
  • [25] Research on the self-powered downhole vibration sensor based on triboelectric nanogenerator
    Chuan, Wu
    He, Huang
    Shuo, Yang
    Fan, Chenxing
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2021, 235 (22) : 6427 - 6434
  • [26] Airflow-Induced Triboelectric Nanogenerator as a Self-Powered Sensor for Detecting Humidity and Airflow Rate
    Guo, Hengyu
    Chen, Jie
    Tian, Li
    Leng, Qiang
    Xi, Yi
    Hu, Chenguo
    ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (19) : 17184 - 17189
  • [27] A Triboelectric Nanogenerator Array for a Self-Powered Boxing Sensor System
    Feng Gao
    Junwei Yao
    Cheng Li
    Lianwen Zhao
    Journal of Electronic Materials, 2022, 51 : 3308 - 3316
  • [28] Triboelectric nanogenerator for self-powered systems and active sensor networks
    Lin, Long
    Wang, Sihong
    Wang, Zhong L.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 247
  • [29] A Triboelectric Nanogenerator Array for a Self-Powered Boxing Sensor System
    Gao, Feng
    Yao, Junwei
    Li, Cheng
    Zhao, Lianwen
    JOURNAL OF ELECTRONIC MATERIALS, 2022, 51 (06) : 3308 - 3316
  • [30] Fully self-powered instantaneous wireless humidity sensing system based on triboelectric nanogenerator
    Xu, Liangquan
    Xuan, Weipeng
    Chen, Jinkai
    Zhang, Chi
    Tang, Yuzhi
    Huang, Xiwei
    Li, Wenjun
    Jin, Hao
    Dong, Shurong
    Yin, Wuliang
    Fu, Yongqing
    Luo, Jikui
    NANO ENERGY, 2021, 83