Generating weighted Hurwitz numbers

被引:4
|
作者
Bertola, M. [1 ,2 ,3 ]
Harnad, J. [1 ,2 ]
Runov, B. [1 ,2 ]
机构
[1] Concordia Univ, Dept Math & Stat, 1455 Maisonneuve Blvd W, Montreal, PQ H3G 1M8, Canada
[2] Univ Montreal, Ctr Rech Math, CP 6128,Succ Ctr Ville, Montreal, PQ H3C 3J7, Canada
[3] SISSA ISAS, Via Bonomea 265, Trieste, Italy
基金
加拿大自然科学与工程研究理事会;
关键词
TODA EQUATIONS; MATRIX MODEL;
D O I
10.1063/1.5130554
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Multicurrent correlators associated with Kadomtsev-Petviashvili tau-functions of hypergeometric type are used as generating functions for weighted Hurwitz numbers. These are expressed as formal Taylor series and used to compute generic, simple, rational, and quantum weighted single Hurwitz numbers.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Tropical real Hurwitz numbers
    Hannah Markwig
    Johannes Rau
    Mathematische Zeitschrift, 2015, 281 : 501 - 522
  • [22] Toda equations for Hurwitz numbers
    Okounkov, A
    MATHEMATICAL RESEARCH LETTERS, 2000, 7 (04) : 447 - 453
  • [23] Around spin Hurwitz numbers
    A. D. Mironov
    A. Morozov
    S. M. Natanzon
    A. Yu. Orlov
    Letters in Mathematical Physics, 2021, 111
  • [24] Tropical real Hurwitz numbers
    Markwig, Hannah
    Rau, Johannes
    MATHEMATISCHE ZEITSCHRIFT, 2015, 281 (1-2) : 501 - 522
  • [25] Pruned double Hurwitz numbers
    Hahn, Marvin Anas
    ELECTRONIC JOURNAL OF COMBINATORICS, 2017, 24 (03):
  • [26] Tropical Open Hurwitz Numbers
    Bertrand, Benoit
    Brugalle, Erwan
    Mikhalkin, Grigory
    RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2011, 125 : 157 - 171
  • [27] A square root of Hurwitz numbers
    Lee, Junho
    MANUSCRIPTA MATHEMATICA, 2020, 162 (1-2) : 99 - 113
  • [28] Monotone Orbifold Hurwitz Numbers
    Do N.
    Karev M.
    Journal of Mathematical Sciences, 2017, 226 (5) : 568 - 587
  • [29] Around spin Hurwitz numbers
    Mironov, A. D.
    Morozov, A.
    Natanzon, S. M.
    Orlov, A. Yu
    LETTERS IN MATHEMATICAL PHYSICS, 2021, 111 (05)
  • [30] Hurwitz numbers for real polynomials
    Itenberg, Ilia
    Zvonkine, Dimitri
    COMMENTARII MATHEMATICI HELVETICI, 2018, 93 (03) : 441 - 474